ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameterized Complexity of Finding Subgraphs with Hereditary Properties on Hereditary Graph Classes

100   0   0.0 ( 0 )
 نشر من قبل Elham Havvaei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $P(G,Pi,k)$ asks whether there exists $k$ vertices of $G$ that induce a subgraph satisfying property $Pi$. This problem, $P(G,Pi,k)$ has been proved to be NP-complete by Lewis and Yannakakis. The parameterized complexity of this problem is shown to be W[1]-complete by Khot and Raman, if $Pi$ includes all trivial graphs but not all complete graphs and vice versa; and is fixed-parameter tractable (FPT), otherwise. As the problem is W[1]-complete on general graphs when $Pi$ includes all trivial graphs but not all complete graphs and vice versa, it is natural to further investigate the problem on restricted graph classes. Motivated by this line of research, we study the problem on graphs which also belong to a hereditary graph class and establish a framework which settles the parameterized complexity of the problem for various hereditary graph classes. In particular, we show that: $P(G,Pi,k)$ is solvable in polynomial time when the graph $G$ is co-bipartite and $Pi$ is the property of being planar, bipartite or triangle-free (or vice-versa). $P(G,Pi,k)$ is FPT when the graph $G$ is planar, bipartite or triangle-free and $Pi$ is the property of being planar, bipartite or triangle-free, or graph $G$ is co-bipartite and $Pi$ is the property of being co-bipartite. $P(G,Pi,k)$ is W[1]-complete when the graph $G$ is $C_4$-free, $K_{1,4}$-free or a unit disk graph and $Pi$ is the property of being either planar or bipartite.



قيم البحث

اقرأ أيضاً

We consider the problems of deciding whether an input graph can be modified by removing/adding at most k vertices/edges such that the result of the modification satisfies some property definable in first-order logic. We establish a number of sufficie nt and necessary conditions on the quantification pattern of the first-order formula phi for the problem to be fixed-parameter tractable or to admit a polynomial kernel.
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying ou t modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem in polynomial time in restricted settings. The first of these utilises dynamic programming on a tree decomposition, and runs in polynomial time if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but is an FPT algorithm when the maximum number of edges that can be removed is taken as the parameter.
Given a family of graphs $mathcal{F}$, we prove that the normalized edit distance of any given graph $Gamma$ to being induced $mathcal{F}$-free is estimable with a query complexity that depends only on the bounds of the Frieze--Kannan Regularity Lemma and on a Removal Lemma for $mathcal{F}$.
Graph-modification problems, where we add/delete a small number of vertices/edges to make the given graph to belong to a simpler graph class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and p arameterized complexity. Specifically, graph-deletion problems, where one needs to delete at most $k$ vertices to place it in a given non-trivial hereditary (closed under induced subgraphs) graph class, captures several well-studied problems including {sc Vertex Cover}, {sc Feedback Vertex Set}, {sc Odd Cycle Transveral}, {sc Cluster Vertex Deletion}, and {sc Perfect Deletion}. Investigation into these problems in parameterized complexity has given rise to powerful tools and techniques. While a precise characterization of the graph classes for which the problem is {it fixed-parameter tractable} (FPT) is elusive, it has long been known that if the graph class is characterized by a {it finite} set of forbidden graphs, then the problem is FPT. In this paper, we initiate a study of a natural variation of the problem of deletion to {it scattered graph classes} where we need to delete at most $k$ vertices so that in the resulting graph, each connected component belongs to one of a constant number of graph classes. A simple hitting set based approach is no longer feasible even if each of the graph classes is characterized by finite forbidden sets. As our main result, we show that this problem is fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the finite classes is known to be FPT and the properties that a graph belongs to each of the classes is expressible in CMSO logic. When each graph class has a finite forbidden set, we give a faster FPT algorithm using the well-known techniques of iterative compression and important separators.
A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put on the problem of finding a single dense subgraph, only r ecently the focus has been shifted to the problem of finding a set of densest subgraphs. Some approaches aim at finding disjoint subgraphs, while in many real-world networks communities are often overlapping. An approach introduced to find possible overlapping subgraphs is the Top-k Overlapping Densest Subgraphs problem. For a given integer k >= 1, the goal of this problem is to find a set of k densest subgraphs that may share some vertices. The objective function to be maximized takes into account both the density of the subgraphs and the distance between subgraphs in the solution. The Top-k Overlapping Densest Subgraphs problem has been shown to admit a 1/10-factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improves the approximation factor to 1/2 , when k is bounded by the vertex set, and to 2/3 when k is a constant. For the computational complexity, we show that the problem is NP-hard even when k = 3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا