ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Parameterized Complexity of Graph Modification to First-Order Logic Properties

149   0   0.0 ( 0 )
 نشر من قبل Petr Golovach
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problems of deciding whether an input graph can be modified by removing/adding at most k vertices/edges such that the result of the modification satisfies some property definable in first-order logic. We establish a number of sufficient and necessary conditions on the quantification pattern of the first-order formula phi for the problem to be fixed-parameter tractable or to admit a polynomial kernel.



قيم البحث

اقرأ أيضاً

The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the pro blems fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: for every graph property P expressible by a first order-logic formula phiin Sigma_3, that is, of the form phi=exists x_1exists x_2cdots exists x_r forall y_1forall y_2cdots forall y_s exists z_1exists z_2cdots exists z_t psi, where psi is a quantifier-free first-order formula, checking whether the elimination distance of a graph to P does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Sigma_3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: there are formulas phiin Pi_3, for which computing elimination distance is W[2]-hard.
We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $ P(G,Pi,k)$ asks whether there exists $k$ vertices of $G$ that induce a subgraph satisfying property $Pi$. This problem, $P(G,Pi,k)$ has been proved to be NP-complete by Lewis and Yannakakis. The parameterized complexity of this problem is shown to be W[1]-complete by Khot and Raman, if $Pi$ includes all trivial graphs but not all complete graphs and vice versa; and is fixed-parameter tractable (FPT), otherwise. As the problem is W[1]-complete on general graphs when $Pi$ includes all trivial graphs but not all complete graphs and vice versa, it is natural to further investigate the problem on restricted graph classes. Motivated by this line of research, we study the problem on graphs which also belong to a hereditary graph class and establish a framework which settles the parameterized complexity of the problem for various hereditary graph classes. In particular, we show that: $P(G,Pi,k)$ is solvable in polynomial time when the graph $G$ is co-bipartite and $Pi$ is the property of being planar, bipartite or triangle-free (or vice-versa). $P(G,Pi,k)$ is FPT when the graph $G$ is planar, bipartite or triangle-free and $Pi$ is the property of being planar, bipartite or triangle-free, or graph $G$ is co-bipartite and $Pi$ is the property of being co-bipartite. $P(G,Pi,k)$ is W[1]-complete when the graph $G$ is $C_4$-free, $K_{1,4}$-free or a unit disk graph and $Pi$ is the property of being either planar or bipartite.
Graph-modification problems, where we add/delete a small number of vertices/edges to make the given graph to belong to a simpler graph class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and p arameterized complexity. Specifically, graph-deletion problems, where one needs to delete at most $k$ vertices to place it in a given non-trivial hereditary (closed under induced subgraphs) graph class, captures several well-studied problems including {sc Vertex Cover}, {sc Feedback Vertex Set}, {sc Odd Cycle Transveral}, {sc Cluster Vertex Deletion}, and {sc Perfect Deletion}. Investigation into these problems in parameterized complexity has given rise to powerful tools and techniques. While a precise characterization of the graph classes for which the problem is {it fixed-parameter tractable} (FPT) is elusive, it has long been known that if the graph class is characterized by a {it finite} set of forbidden graphs, then the problem is FPT. In this paper, we initiate a study of a natural variation of the problem of deletion to {it scattered graph classes} where we need to delete at most $k$ vertices so that in the resulting graph, each connected component belongs to one of a constant number of graph classes. A simple hitting set based approach is no longer feasible even if each of the graph classes is characterized by finite forbidden sets. As our main result, we show that this problem is fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the finite classes is known to be FPT and the properties that a graph belongs to each of the classes is expressible in CMSO logic. When each graph class has a finite forbidden set, we give a faster FPT algorithm using the well-known techniques of iterative compression and important separators.
We present three new quantum algorithms in the quantum query model for textsc{graph-collision} problem: begin{itemize} item an algorithm based on tree decomposition that uses $Oleft(sqrt{n}t^{sfrac{1}{6}}right)$ queries where $t$ is the treewidth of the graph; item an algorithm constructed on a span program that improves a result by Gavinsky and Ito. The algorithm uses $O(sqrt{n}+sqrt{alpha^{**}})$ queries, where $alpha^{**}(G)$ is a graph parameter defined by [alpha^{**}(G):=min_{VCtext{-- vertex cover of}G}{max_{substack{Isubseteq VCItext{-- independent set}}}{sum_{vin I}{deg{v}}}};] item an algorithm for a subclass of circulant graphs that uses $O(sqrt{n})$ queries. end{itemize} We also present an example of a possibly difficult graph $G$ for which all the known graphs fail to solve graph collision in $O(sqrt{n} log^c n)$ queries.
The problem of matching a query string to a directed graph, whose vertices are labeled by strings, has application in different fields, from data mining to computational biology. Several variants of the problem have been considered, depending on the fact that the match is exact or approximate and, in this latter case, which edit operations are considered and where are allowed. In this paper we present results on the complexity of the approximate matching problem, where edit operations are symbol substitutions and are allowed only on the graph labels or both on the graph labels and the query string. We introduce a variant of the problem that asks whether there exists a path in a graph that represents a query string with any number of edit operations and we show that is is NP-complete, even when labels have length one and in the case the alphabet is binary. Moreover, when it is parameterized by the length of the input string and graph labels have length one, we show that the problem is fixed-parameter tractable and it is unlikely to admit a polynomial kernel. The NP-completeness of this problem leads to the inapproximability (within any factor) of the approximate matching when edit operations are allowed only on the graph labels. Moreover, we show that the variants of approximate string matching to graph we consider are not fixed-parameter tractable, when the parameter is the number of edit operations, even for graphs that have distance one from a DAG. The reduction for this latter result allows us to prove the inapproximability of the variant where edit operations can be applied both on the query string and on graph labels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا