ﻻ يوجد ملخص باللغة العربية
Vacuum fluctuations of quantum fields between physical objects depend on the shapes, positions, and internal composition of the latter. For objects of arbitrary shapes, even made from idealized materials, the calculation of the associated zero-point (Casimir) energy is an analytically intractable challenge. We propose a new numerical approach to this problem based on machine-learning techniques and illustrate the effectiveness of the method in a (2+1) dimensional scalar field theory. The Casimir energy is first calculated numerically using a Monte-Carlo algorithm for a set of the Dirichlet boundaries of various shapes. Then, a neural network is trained to compute this energy given the Dirichlet domain, treating the latter as black-and-white pixelated images. We show that after the learning phase, the neural network is able to quickly predict the Casimir energy for new boundaries of general shapes with reasonable accuracy.
We propose a definition of the Casimir energy for free lattice fermions. From this definition, we study the Casimir effects for the massless or massive naive fermion, Wilson fermion, and (Mobius) domain-wall fermion in $1+1$ dimensional spacetime wit
The Casimir effect arises from the zero-point energy of particles in momentum space deformed by the existence of two parallel plates. For degrees of freedom on the lattice, its energy-momentum dispersion is determined so as to keep a periodicity with
We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis.
The dynamical Casimir effect is an intriguing phenomenon in which photons are generated from vacuum due to a non-adiabatic change in some boundary conditions. In particular, it connects the motion of an accelerated mechanical mirror to the generation
We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demon