ﻻ يوجد ملخص باللغة العربية
We propose a definition of the Casimir energy for free lattice fermions. From this definition, we study the Casimir effects for the massless or massive naive fermion, Wilson fermion, and (Mobius) domain-wall fermion in $1+1$ dimensional spacetime with the spatial periodic or antiperiodic boundary condition. For the naive fermion, we find an oscillatory behavior of the Casimir energy, which is caused by the difference between odd and even lattice sizes. For the Wilson fermion, in the small lattice size of $N geq 3$, the Casimir energy agrees very well with that of the continuum theory, which suggests that we can control the discretization artifacts for the Casimir effect measured in lattice simulations. We also investigate the dependence on the parameters tunable in Mobius domain-wall fermions. Our findings will be observed both in condensed matter systems and in lattice simulations with a small size.
The Casimir effect arises from the zero-point energy of particles in momentum space deformed by the existence of two parallel plates. For degrees of freedom on the lattice, its energy-momentum dispersion is determined so as to keep a periodicity with
Vacuum fluctuations of quantum fields between physical objects depend on the shapes, positions, and internal composition of the latter. For objects of arbitrary shapes, even made from idealized materials, the calculation of the associated zero-point
We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demon
We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis.
The fermion condensate (FC) is investigated for a (2+1)-dimensional massive fermionic field confined on a truncated cone with an arbitrary planar angle deficit and threaded by a magnetic flux. Different combinations of the boundary conditions are imp