ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice-fermionic Casimir effect and topological insulators

121   0   0.0 ( 0 )
 نشر من قبل Kei Suzuki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Casimir effect arises from the zero-point energy of particles in momentum space deformed by the existence of two parallel plates. For degrees of freedom on the lattice, its energy-momentum dispersion is determined so as to keep a periodicity within the Brillouin zone, so that its Casimir effect is modified. We study the properties of Casimir effect for lattice fermions, such as the naive fermion, Wilson fermion, and overlap fermion based on the Mobius domain-wall fermion formulation, in the $1+1$-, $2+1$-, and $3+1$-dimensional space-time with the periodic or antiperiodic boundary condition. An oscillatory behavior of Casimir energy between odd and even lattice size is induced by the contribution of ultraviolet-momentum (doubler) modes, which realizes in the naive fermion, Wilson fermion in a negative mass, and overlap fermions with a large domain-wall height. Our findings can be experimentally observed in condensed matter systems such as topological insulators and also numerically measured in lattice simulations.



قيم البحث

اقرأ أيضاً

We propose a definition of the Casimir energy for free lattice fermions. From this definition, we study the Casimir effects for the massless or massive naive fermion, Wilson fermion, and (Mobius) domain-wall fermion in $1+1$ dimensional spacetime wit h the spatial periodic or antiperiodic boundary condition. For the naive fermion, we find an oscillatory behavior of the Casimir energy, which is caused by the difference between odd and even lattice sizes. For the Wilson fermion, in the small lattice size of $N geq 3$, the Casimir energy agrees very well with that of the continuum theory, which suggests that we can control the discretization artifacts for the Casimir effect measured in lattice simulations. We also investigate the dependence on the parameters tunable in Mobius domain-wall fermions. Our findings will be observed both in condensed matter systems and in lattice simulations with a small size.
Vacuum fluctuations of quantum fields between physical objects depend on the shapes, positions, and internal composition of the latter. For objects of arbitrary shapes, even made from idealized materials, the calculation of the associated zero-point (Casimir) energy is an analytically intractable challenge. We propose a new numerical approach to this problem based on machine-learning techniques and illustrate the effectiveness of the method in a (2+1) dimensional scalar field theory. The Casimir energy is first calculated numerically using a Monte-Carlo algorithm for a set of the Dirichlet boundaries of various shapes. Then, a neural network is trained to compute this energy given the Dirichlet domain, treating the latter as black-and-white pixelated images. We show that after the learning phase, the neural network is able to quickly predict the Casimir energy for new boundaries of general shapes with reasonable accuracy.
We investigate the combined effects of boundaries and topology on the vacuum expectation values (VEVs) of the charge and current densities for a massive 2D fermionic field confined on a conical ring threaded by a magnetic flux. Different types of bou ndary conditions on the ring edges are considered for fields realizing two inequivalent irreducible representations of the Clifford algebra. The related bound states and zero energy fermionic modes are discussed. The edge contributions to the VEVs of the charge and azimuthal current densities are explicitly extracted and their behavior in various asymptotic limits is considered. On the ring edges the azimuthal current density is equal to the charge density or has an opposite sign. We show that the absolute values of the charge and current densities increase with increasing planar angle deficit. Depending on the boundary conditions, the VEVs are continuous or discontinuous at half-integer values of the ratio of the effective magnetic flux to the flux quantum. The discontinuity is related to the presence of the zero energy mode. By combining the results for the fields realizing the irreducible representations of the Clifford algebra, the charge and current densities are studied in parity and time-reversal symmetric fermionic models. If the boundary conditions and the phases in quasiperiodicity conditions for separate fields are the same the total charge density vanishes. Applications are given to graphitic cones with edges (conical ribbons).
We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopp ing case, the low-energy neutral excitation spectrum is sensitive to boundary conditions, which is a manifestation of the non-Hermitian skin effect. However, unlike the single-particle case, particle density of strongly correlated system does not suffer from the non-Hermitian skin effect due to the Pauli exclusion principle and repulsive interactions. Moreover, the anomalous boundary effect occurs due to the interplay of nonreciprocal hopping, superlattice potential, and strong correlations, where some in-gap modes, for both the neutral and charge excitation spectra, show no edge excitations defined via only the right eigenvectors. We show that these edge excitations of the in-gap states can be correctly characterized by only biorthogonal eigenvectors. Furthermore, the topological Mott phase, with gapless particle excitations around boundaries, exists even for the purely imaginary-valued interaction, where the continuous quantum Zeno effect leads to the effective on-site repulsion between two-component fermions.
We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis. Then we demonstrate that the Casimir force between two parallel plates perpendicular to the $z$-axis can be either attractive or repulsive, dependent on the gradient of $theta$. We call this repulsive component in the Casimir force induced by inhomogeneous $theta$ the anomalous Casimir effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا