ﻻ يوجد ملخص باللغة العربية
Say that we are given samples from a distribution $psi$ over an $n$-dimensional space. We expect or desire $psi$ to behave like a product distribution (or a $k$-wise independent distribution over its marginals for small $k$). We propose the problem of enumerating/list-decoding all large subcubes where the distribution $psi$ deviates markedly from what we expect; we refer to such subcubes as skewed subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in $psi$. We motivate this problem by showing that it arises naturally in the context of algorithmic fairness and anomaly detection. In this work we focus on the special but important case where the space is the Boolean hypercube, and the expected marginals are uniform. We show that the obvious definition of skewed subcubes can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main technical contribution is a list-size bound for this definition and an algorithm to efficiently find all such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially the powerful hypercontractive inequality. On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse noisy parity problem, and hence our algorithms cannot be improved on substantially without a breakthrough on this problem which is believed to be intractable. Motivated by this, we study alternate models allowing query access to $psi$ where finding skewed subcubes might be easier.
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying ou
For two positive integers $k$ and $ell$, a $(k times ell)$-spindle is the union of $k$ pairwise internally vertex-disjoint directed paths with $ell$ arcs between two vertices $u$ and $v$. We are interested in the (parameterized) complexity of several
We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time sol
begin{abstract} The frequencies of the elements in a data stream are an important statistical measure and the task of estimating them arises in many applications within data analysis and machine learning. Two of the most popular algorithms for this p