ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs: Finding Large Block Graphs

156   0   0.0 ( 0 )
 نشر من قبل Daniel Paulusma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time solvable for $sP_3$-free graphs for every integer $sgeq 1$. Our results show that both problems exhibit the same behaviour on $H$-free graphs (subject to some open cases). This is in part explained by a new general algorithm we design for finding in a graph $G$ a largest induced subgraph whose blocks belong to some finite class ${cal C}$ of graphs. We also compare our results with the state-of-the-art results for the Odd Cycle Transversal problem, which is known to behave differently on $H$-free graphs.

قيم البحث

اقرأ أيضاً

A natural way of increasing our understanding of NP-complete graph problems is to restrict the input to a special graph class. Classes of $H$-free graphs, that is, graphs that do not contain some graph $H$ as an induced subgraph, have proven to be an ideal testbed for such a complexity study. However, if the forbidden graph $H$ contains a cycle or claw, then these problems often stay NP-complete. A recent complexity study on the $k$-Colouring problem shows that we may still obtain tractable results if we also bound the diameter of the $H$-free input graph. We continue this line of research by initiating a complexity study on the impact of bounding the diameter for a variety of classical vertex partitioning problems restricted to $H$-free graphs. We prove that bounding the diameter does not help for Independent Set, but leads to new tractable cases for problems closely related to 3-Colouring. That is, we show that Near-Bipartiteness, Independent Feedback Vertex Set, Independent Odd Cycle Transversal, Acyclic 3-Colouring and Star 3-Colouring are all polynomial-time solvable for chair-free graphs of bounded diameter. To obtain these results we exploit a new structural property of 3-colourable chair-free graphs.
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint P aths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The objective is to determine whether there exists a directed odd cycle transversal of $D$ of size at most $k$. In this paper, we settle the parameterized complexity of DOCT when parameterized by the solution size $k$ by showing that DOCT does not admit an algorithm with running time $f(k)n^{O(1)}$ unless FPT = W[1]. On the positive side, we give a factor $2$ fixed parameter tractable (FPT) approximation algorithm for the problem. More precisely, our algorithm takes as input $D$ and $k$, runs in time $2^{O(k^2)}n^{O(1)}$, and either concludes that $D$ does not have a directed odd cycle transversal of size at most $k$, or produces a solution of size at most $2k$. Finally, we provide evidence that there exists $epsilon > 0$ such that DOCT does not admit a factor $(1+epsilon)$ FPT-approximation algorithm.
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ connects $s_i$ and $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We study it for AT-free graphs. Unlike its subclasses of permutation graphs and cocomparability graphs, the class of AT-free graphs has no geometric intersection model. However, by a new, structural analysis of the behaviour of Induced Disjoint Paths for AT-free graphs, we prove that it can be solved in polynomial time for AT-free graphs even when $k$ is part of the input. This is in contrast to the situation for other well-known graph classes, such as planar graphs, claw-free graphs, or more recently, (theta,wheel)-free graphs, for which such a result only holds if $k$ is fixed. As a consequence of our main result, the problem of deciding if a given AT-free graph contains a fixed graph $H$ as an induced topological minor admits a polynomial-time algorithm. In addition, we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard with parameter $|V_H|$, even on a subclass of AT-free graph, namely cobipartite graphs. We also show that the problems $k$-in-a-Path and $k$-in-a-Tree are polynomial-time solvable on AT-free graphs even if $k$ is part of the input. These problems are to test if a graph has an induced path or induced tree, respectively, spanning $k$ given vertices.
We initiate the study of a new parameterization of graph problems. In a multiple interval representation of a graph, each vertex is associated to at least one interval of the real line, with an edge between two vertices if and only if an interval ass ociated to one vertex has a nonempty intersection with an interval associated to the other vertex. A graph on n vertices is a k-gap interval graph if it has a multiple interval representation with at most n+k intervals in total. In order to scale up the nice algorithmic properties of interval graphs (where k=0), we parameterize graph problems by k, and find FPT algorithms for several problems, including Feedback Vertex Set, Dominating Set, Independent Set, Clique, Clique Cover, and Multiple Interval Transversal. The Coloring problem turns out to be W[1]-hard and we design an XP algorithm for the recognition problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا