ﻻ يوجد ملخص باللغة العربية
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time solvable for $sP_3$-free graphs for every integer $sgeq 1$. Our results show that both problems exhibit the same behaviour on $H$-free graphs (subject to some open cases). This is in part explained by a new general algorithm we design for finding in a graph $G$ a largest induced subgraph whose blocks belong to some finite class ${cal C}$ of graphs. We also compare our results with the state-of-the-art results for the Odd Cycle Transversal problem, which is known to behave differently on $H$-free graphs.
A natural way of increasing our understanding of NP-complete graph problems is to restrict the input to a special graph class. Classes of $H$-free graphs, that is, graphs that do not contain some graph $H$ as an induced subgraph, have proven to be an
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint P
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$
We initiate the study of a new parameterization of graph problems. In a multiple interval representation of a graph, each vertex is associated to at least one interval of the real line, with an edge between two vertices if and only if an interval ass