ﻻ يوجد ملخص باللغة العربية
Active matter, composed of self-propelled entities, forms a wide class of out-of-equilibrium systems that display striking collective behaviors among which the so-called active turbulence where spatially and time disordered flow patterns spontaneously arise in a variety of {active systems}. De facto, the active turbulence naming suggests a connection with a second seminal class of out-of-equilibrium systems, fluid turbulence, and yet of very different nature with energy injected at global system scale rather than at the elementary scale of single constituents. Indeed the existence of a possible strong-tie between active and canonical turbulence remains an open question and a field of profuse research. Using an assembly of self-propelled interfacial particles, we show experimentally that this active system shares remarkable quantitative similarities with canonical fluid turbulence, as described by the celebrated 1941 phenomenology of Kolmogorov. Making active matter entering into the universality class of fluid turbulence not only benefits to its future development but may also provide new insights for the longstanding description of turbulent flows, arguably one of the biggest remaining mysteries in classical physics.
Early research in aerodynamics and biological propulsion was dramatically advanced by the analytical solutions of Theodorsen, von K{a}rm{a}n, Wu and others. While these classical solutions apply only to isolated swimmers, the flow interactions betwee
We develop a general hydrodynamic theory describing a system of interacting actively propelling particles of arbitrary shape suspended in a viscous fluid. We model the active part of the particle motion using a slip velocity prescribed on the otherwi
A Lorenz-like model was set up recently, to study the hydrodynamic instabilities in a driven active matter system. This Lorenz model differs from the standard one in that all three equations contain non-linear terms. The additional non-linear term co
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water
Marine microorganisms must cope with complex flow patterns and even turbulence as they navigate the ocean. To survive they must avoid predation and find efficient energy sources. A major difficulty in analysing possible survival strategies is that th