ﻻ يوجد ملخص باللغة العربية
A Lorenz-like model was set up recently, to study the hydrodynamic instabilities in a driven active matter system. This Lorenz model differs from the standard one in that all three equations contain non-linear terms. The additional non-linear term comes from the active matter contribution to the stress tensor. In this work, we investigate the non-linear properties of this Lorenz model both analytically and numerically. The significant feature of the model is the passage to chaos through a complete set of period-doubling bifurcations above the Hopf point for inverse Schmidt numbers above a critical value. Interestingly enough, at these Schmidt numbers a strange attractor and stable fixed points coexist beyond the homoclinic point. At the Hopf point, the strange attractor disappears leaving a high-period periodic orbit. This periodic state becomes the expected limit cycle through a set of bifurcations and then undergoes a sequence of period-doubling bifurcations leading to the formation of a strange attractor. This is the first situation where a Lorenz-like model has shown a set of consecutive period-doubling bifurcations in a physically relevant transition to turbulence.
Turbulence in driven stratified active matter is considered. The relevant parameters characterizing the problem are the Reynolds number Re and an active matter Richardson-like number,R. In the mixing limit,Re>>1, R<<1, we show that the standard Kolmo
The collective motion of microswimmers in suspensions induce patterns of vortices on scales that are much larger than the characteristic size of a microswimmer, attaining a state called bacterial turbulence. Hydrodynamic turbulence acts on even large
We investigate universality of the Eulerian velocity structure functions using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in experiments and the direct numerical simulations (DNS) of the Navier-Stokes e
The results of experimental and theoretical studies of the parametric decay instability of capillary waves on the surface of superfluid helium He-II are reported. It is demonstrated that in a system of turbulent capillary waves low-frequency waves ar
We present a comprehensive study of the statistical features of a three-dimensional time-reversible Navier-Stokes (RNS) system, wherein the standard viscosity $ u$ is replaced by a fluctuating thermostat that dynamically compensates for fluctuations