ﻻ يوجد ملخص باللغة العربية
We develop a general hydrodynamic theory describing a system of interacting actively propelling particles of arbitrary shape suspended in a viscous fluid. We model the active part of the particle motion using a slip velocity prescribed on the otherwise rigid particle surfaces. We introduce the general framework for particle rotations and translations by applying the Lorentz reciprocal theorem for a collection of mobile particles with arbitrary surface slip. We then develop an approximate theory applicable to widely separated spheres, including hydrodynamic interactions up to the level of force quadrupoles. We apply our theory to a general example involving a prescribed slip velocity, and a specific case concerning the autonomous motion of chemically active particles moving by diffusiophoresis due to self-generated chemical gradients.
We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential fiel
Inertialess anisotropic particles in a Rayleigh-Benard turbulent flow show maximal tumbling rates for weakly oblate shapes, in contrast with the universal behaviour observed in developed turbulence where the mean tumbling rate monotonically decreases
A flowing pair of particles in inertial microfluidics gives important insights into understanding and controlling the collective dynamics of particles like cells or droplets in microfluidic devices. They are applied in medical cell analysis and engin
We investigate the effective friction encountered by an intruder moving through a sedimented medium which consists of transparent granular hydrogels immersed in water, and the resulting motion of the medium. We show that the effective friction $mu_e$
We study the hydrodynamic coupling between particles and solid, rough boundaries characterized by random surface textures. Using the Lorentz reciprocal theorem, we derive analytical expressions for the grand mobility tensor of a spherical particle an