ﻻ يوجد ملخص باللغة العربية
Self-organized bistability (SOB) is the counterpart of self-organized criticality (SOC), for systems tuning themselves to the edge of bistability of a discontinuous phase transition, rather than to the critical point of a continuous one. The equations defining the mathematical theory of SOB turn out to bear strong resemblance to a (Landau-Ginzburg) theory recently proposed to analyze the dynamics of the cerebral cortex. This theory describes the neuronal activity of coupled mesoscopic patches of cortex, homeostatically regulated by short-term synaptic plasticity. The theory for cortex dynamics entails, however, some significant differences with respect to SOB, including the lack of a (bulk) conservation law, the absence of a perfect separation of timescales and, the fact that in the former, but not in the second, there is a parameter that controls the overall system state (in blatant contrast with the very idea of self-organization). Here, we scrutinize --by employing a combination of analytical and computational tools-- the analogies and differences between both theories and explore whether in some limit SOB can play an important role to explain the emergence of scale-invariant neuronal avalanches observed empirically in the cortex. We conclude that, actually, in the limit of infinitely slow synaptic-dynamics, the two theories become identical, but the timescales required for the self-organization mechanism to be effective do not seem to be biologically plausible. We discuss the key differences between self-organization mechanisms with/without conservation and with/without infinitely separated timescales. In particular, we introduce the concept of self-organized collective oscillations and scrutinize the implications of our findings in neuroscience, shedding new light into the problems of scale invariance and oscillations in cortical dynamics.
Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions, due to the diver
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant r
The existence of power-law distributions is only a first requirement in the validation of the critical behavior of a system. Long-range spatio-temporal correlations are fundamental for the spontaneous neuronal activity to be the expression of a syste
The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends o
We propose a dynamical model in which a network structure evolves in a self-organized critical (SOC) manner and explain a possible origin of the emergence of fractal and small-world networks. Our model combines a network growth and its decay by failu