ترغب بنشر مسار تعليمي؟ اضغط هنا

A reduction methodology for fluctuation driven population dynamics

77   0   0.0 ( 0 )
 نشر من قبل Denis Goldobin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions, due to the divergence of all the moments (cumulants). We have solved this problem by introducing a `pseudo-cumulants expansion. This allows us to develop a reduction methodology for heterogeneous spiking neural networks subject to extrinsinc and endogenous noise sources, thus generalizing the mean-field formulation introduced in [E. Montbrio et al., Phys. Rev. X 5, 021028 (2015)].



قيم البحث

اقرأ أيضاً

Self-organized bistability (SOB) is the counterpart of self-organized criticality (SOC), for systems tuning themselves to the edge of bistability of a discontinuous phase transition, rather than to the critical point of a continuous one. The equation s defining the mathematical theory of SOB turn out to bear strong resemblance to a (Landau-Ginzburg) theory recently proposed to analyze the dynamics of the cerebral cortex. This theory describes the neuronal activity of coupled mesoscopic patches of cortex, homeostatically regulated by short-term synaptic plasticity. The theory for cortex dynamics entails, however, some significant differences with respect to SOB, including the lack of a (bulk) conservation law, the absence of a perfect separation of timescales and, the fact that in the former, but not in the second, there is a parameter that controls the overall system state (in blatant contrast with the very idea of self-organization). Here, we scrutinize --by employing a combination of analytical and computational tools-- the analogies and differences between both theories and explore whether in some limit SOB can play an important role to explain the emergence of scale-invariant neuronal avalanches observed empirically in the cortex. We conclude that, actually, in the limit of infinitely slow synaptic-dynamics, the two theories become identical, but the timescales required for the self-organization mechanism to be effective do not seem to be biologically plausible. We discuss the key differences between self-organization mechanisms with/without conservation and with/without infinitely separated timescales. In particular, we introduce the concept of self-organized collective oscillations and scrutinize the implications of our findings in neuroscience, shedding new light into the problems of scale invariance and oscillations in cortical dynamics.
The existence of power-law distributions is only a first requirement in the validation of the critical behavior of a system. Long-range spatio-temporal correlations are fundamental for the spontaneous neuronal activity to be the expression of a syste m acting close to a critical point. This chapter focuses on temporal correlations and avalanche dynamics in the spontaneous activity of cortex slice cultures and in the resting fMRI BOLD signal. Long-range correlations are investigated by means of the scaling of power spectra and of Detrended Fluctuations Analysis. The existence of 1/f decay in the power spectrum, as well as of power-law scaling in the root mean square fluctuations function for the appropriate balance of excitation and inhibition suggests that long-range temporal correlations are distinctive of healthy brains. The corresponding temporal organization of neuronal avalanches can be dissected by analyzing the distribution of inter-event times between successive events. In rat cortex slice cultures this distribution exhibits a non-monotonic behavior, not usually found in other natural processes. Numerical simulations provide evidences that this behavior is a consequence of the alternation between states of high and low activity, leading to a dynamic balance between excitation and inhibition that tunes the system at criticality. In this scenario, inter-times show a peculiar relation with avalanche sizes, resulting in a hierarchical structure of avalanche sequences. Large avalanches correspond to low-frequency oscillations, and trigger cascades of smaller avalanches that are part of higher frequency rhythms. The self-regulated balance of excitation and inhibition observed in cultures is confirmed at larger scales, i.e. on fMRI data from resting brain activity, and appears to be closely related to critical features of avalanche activity.
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and inves tigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.
We use symbolic dynamics to study discrete adaptive games, such as the minority game and the El Farol Bar problem. We show that no such game can have deterministic chaos. We put upper bounds on the statistical complexity and period of these games; th e former is at most linear in the number agents and the size of their memories. We extend our results to cases where the players have infinite-duration memory (they are still non-chaotic) and to cases where there is ``noise in the play (leaving the complexity unchanged or even reduced). We conclude with a mechanism that can reconcile our findings with the phenomenology, and reflections on the merits of simple models of mutual adaptation.
81 - M. Baiesi , S. S. Manna 2003
Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By appl ying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا