ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic damping modulation in $IrMn_{3}/Ni_{80}Fe_{20}$ via the magnetic spin Hall effect

103   0   0.0 ( 0 )
 نشر من قبل Hilal Saglam
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-collinear antiferromagnets can have additional spin Hall effects due to the net chirality of their magnetic spin structure, which provides for more complex spin-transport phenomena compared to ordinary non-magnetic materials. Here we investigated how ferromagnetic resonance of permalloy ($Ni_{80}Fe_{20}$) is modulated by spin Hall effects in adjacent epitaxial $IrMn_{3}$ films. We observe a large dc modulation of the ferromagnetic resonance linewidth for currents applied along the [001] $IrMn_{3}$ direction. This very strong angular dependence of spin-orbit torques from dc currents through the bilayers can be explained by the magnetic spin Hall effect where $IrMn_{3}$ provides novel pathways for modulating magnetization dynamics electrically.



قيم البحث

اقرأ أيضاً

We propose a picture for the magnetic properties of superconductor/ferromagnet (S/F) heterostructures based on Nb and permalloy (Py: Fe_{20}Ni_{80}). By measuring the magnetic moment as a function of the temperature in S/F/S trilayers for different t hicknesses of the middle F layer, we give evidence of the presence of a magnetic stray field of the F layer. For values of F-layer thickness below a threshold, we establish a correlation between the magnetic measurements of the S/F/S trilayers and the anomalous magnetic dependence of the critical current in S/insulator/thin superconducting film/F/S (SIsFS) Josephson junctions (JJs). These complementary investigations provide a self-consistent method to fully characterize S/F heterostructures and possibly demonstrate effects arising from the mutual interactions between ferromagnetism and superconductivity. A shift in the Fraunhofer critical current oscillations has been observed in the opposite direction to the one commonly observed in JJs with F barriers, as it has been recently predicted by inverse and electromagnetic proximity theories. This inverse memory effect is relevant for the design of these heterostructures as memory cells and spintronic devices.
Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, whic h imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions. Here, we propose and experimentally demonstrate that nonlinear damping can be controlled by the ellipticity of magnetization precession. By balancing different contributions to anisotropy, we minimize the ellipticity and achieve coherent magnetization oscillations driven by spatially extended spin current injection into a microscopic magnetic disk. Our results provide a novel route for the implementation of efficient active spintronic and magnonic devices driven by spin current.
We show that direct current in a tantalum microstrip can induce steady-state magnetic oscillations in an adjacent nanomagnet through spin torque from the spin Hall effect (SHE). The oscillations are detected electrically via a magnetic tunnel junctio n (MTJ) contacting the nanomagnet. The oscillation frequency can be controlled using the MTJ bias to tune the magnetic anisotropy. In this 3-terminal device the SHE torque and the MTJ bias therefore provide independent controls of the oscillation amplitude and frequency, enabling new approaches for developing tunable spin torque nano-oscillators.
The spin Hall effect (SHE) generates spin currents within nonmagnetic materials. Previously, studies of the SHE have been motivated primarily to understand its fundamental origin and magnitude. Here we demonstrate, using measurement and modeling, tha t in a Pt/Co bilayer with perpendicular magnetic anisotropy the SHE can produce a spin transfer torque that is strong enough to efficiently rotate and reversibly switch the Co magnetization, thereby providing a new strategy both to understand the SHE and to manipulate magnets. We suggest that the SHE torque can have a similarly strong influence on current-driven magnetic domain wall motion in Pt/ferromagnet multilayers. We estimate that in optimized devices the SHE torque can switch magnetic moments using currents comparable to those in magnetic tunnel junctions operated by conventional spin-torque switching, meaning that the SHE can enable magnetic memory and logic devices with similar performance but simpler architecture than the current state of the art.
Two promising strategies for achieving efficient control of magnetization in future magnetic memory and non-volatile spin logic devices are spin transfer torque from spin polarized currents and voltage-controlled magnetic anisotropy (VCMA). Spin tran sfer torque is in widespread development as the write mechanism for next-generation magnetic memory, while VCMA offers the potential of even better energy performance due to smaller Ohmic losses. Here we introduce a 3-terminal magnetic tunnel junction (MTJ) device that combines both of these mechanisms to achieve new functionality: gate-voltage-modulated spin torque switching. This gating makes possible both more energy-efficient switching and also improved architectures for memory and logic applications, including a simple approach for making magnetic memories with a maximum-density cross-point geometry that does not require a control transistor for every MTJ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا