ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate voltage modulation of spin-Hall-torque-driven magnetic switching

176   0   0.0 ( 0 )
 نشر من قبل Luqiao Liu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two promising strategies for achieving efficient control of magnetization in future magnetic memory and non-volatile spin logic devices are spin transfer torque from spin polarized currents and voltage-controlled magnetic anisotropy (VCMA). Spin transfer torque is in widespread development as the write mechanism for next-generation magnetic memory, while VCMA offers the potential of even better energy performance due to smaller Ohmic losses. Here we introduce a 3-terminal magnetic tunnel junction (MTJ) device that combines both of these mechanisms to achieve new functionality: gate-voltage-modulated spin torque switching. This gating makes possible both more energy-efficient switching and also improved architectures for memory and logic applications, including a simple approach for making magnetic memories with a maximum-density cross-point geometry that does not require a control transistor for every MTJ.



قيم البحث

اقرأ أيضاً

The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The d omain wall moves along or against the current flow depending on the underlayer material. The direction to which the domain wall moves is associated with the chirality of the domain wall spiral formed in these heterostructures. The one-dimensional model is used to describe the experimental results and extract parameters such as the Dzyaloshinskii-Moriya exchange constant which is responsible for the formation of the domain wall spiral. Fascinating effects arising from the control of interfaces in magnetic heterostructures are described.
145 - Luqiao Liu , Chi-Feng Pai , Y. Li 2012
We report a giant spin Hall effect (SHE) in {beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superi or to existing technologies. We quantify this SHE by three independent methods and demonstrate spin-torque (ST) switching of both out-of-plane and in-plane magnetized layers. We implement a three-terminal device that utilizes current passing through a low impedance Ta-ferromagnet bilayer to effect switching of a nanomagnet, with a higher-impedance magnetic tunnel junction for read-out. The efficiency and reliability of this device, together with its simplicity of fabrication, suggest that this three-terminal SHE-ST design can eliminate the main obstacles currently impeding the development of magnetic memory and non-volatile spin logic technologies.
Precise estimation of spin Hall angle as well as successful maximization of spin-orbit torque (SOT) form a basis of electronic control of magnetic properties with spintronic functionality. Until now, current-nonlinear Hall effect, or second harmonic Hall voltage has been utilized as one of the methods for estimating spin Hall angle, which is attributed to the magnetization oscillation by SOT. Here, we argue the second harmonic Hall voltage in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$. From the angular, temperature and magnetic field dependence, it is unambiguously shown that the large second harmonic Hall voltage in TI heterostructures is governed not by SOT but mainly by asymmetric magnon scattering mechanism without magnetization oscillation. Thus, this method does not allow an accurate estimation of spin Hall angle when magnons largely contribute to electron scattering. Instead, the SOT contribution in a TI heterostructure is exemplified by current pulse induced non-volatile magnetization switching, which is realized with a current density of $sim 2.5 times 10^{10} mathrm{A/m}^2$, showing its potential as spintronic materials.
Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin Hall-induced spin current. However, o rbital current cannot directly exert a torque on a ferromagnet, requiring a conversion process from orbital current to spin current. Here, we report two effective methods of the conversion through spin-orbit coupling engineering, which allows us to unambiguously demonstrate orbital-current-induced spin torque, or orbital Hall torque. We find that orbital Hall torque is greatly enhanced by introducing either a rare-earth ferromagnet Gd or a Pt interfacial layer with strong spin-orbit coupling in Cr/ferromagnet structures, indicating that the orbital current generated in Cr is efficiently converted into spin current in the Gd or Pt layer. Furthermore, we show that the orbital Hall torque can facilitate the reduction of switching current of perpendicular magnetization in spin-orbit-torque-based spintronic devices.
The spin Hall effect (SHE) generates spin currents within nonmagnetic materials. Previously, studies of the SHE have been motivated primarily to understand its fundamental origin and magnitude. Here we demonstrate, using measurement and modeling, tha t in a Pt/Co bilayer with perpendicular magnetic anisotropy the SHE can produce a spin transfer torque that is strong enough to efficiently rotate and reversibly switch the Co magnetization, thereby providing a new strategy both to understand the SHE and to manipulate magnets. We suggest that the SHE torque can have a similarly strong influence on current-driven magnetic domain wall motion in Pt/ferromagnet multilayers. We estimate that in optimized devices the SHE torque can switch magnetic moments using currents comparable to those in magnetic tunnel junctions operated by conventional spin-torque switching, meaning that the SHE can enable magnetic memory and logic devices with similar performance but simpler architecture than the current state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا