ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic switching by spin torque from the spin Hall effect

151   0   0.0 ( 0 )
 نشر من قبل Luqiao Liu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin Hall effect (SHE) generates spin currents within nonmagnetic materials. Previously, studies of the SHE have been motivated primarily to understand its fundamental origin and magnitude. Here we demonstrate, using measurement and modeling, that in a Pt/Co bilayer with perpendicular magnetic anisotropy the SHE can produce a spin transfer torque that is strong enough to efficiently rotate and reversibly switch the Co magnetization, thereby providing a new strategy both to understand the SHE and to manipulate magnets. We suggest that the SHE torque can have a similarly strong influence on current-driven magnetic domain wall motion in Pt/ferromagnet multilayers. We estimate that in optimized devices the SHE torque can switch magnetic moments using currents comparable to those in magnetic tunnel junctions operated by conventional spin-torque switching, meaning that the SHE can enable magnetic memory and logic devices with similar performance but simpler architecture than the current state of the art.



قيم البحث

اقرأ أيضاً

146 - Luqiao Liu , Chi-Feng Pai , Y. Li 2012
We report a giant spin Hall effect (SHE) in {beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superi or to existing technologies. We quantify this SHE by three independent methods and demonstrate spin-torque (ST) switching of both out-of-plane and in-plane magnetized layers. We implement a three-terminal device that utilizes current passing through a low impedance Ta-ferromagnet bilayer to effect switching of a nanomagnet, with a higher-impedance magnetic tunnel junction for read-out. The efficiency and reliability of this device, together with its simplicity of fabrication, suggest that this three-terminal SHE-ST design can eliminate the main obstacles currently impeding the development of magnetic memory and non-volatile spin logic technologies.
Two promising strategies for achieving efficient control of magnetization in future magnetic memory and non-volatile spin logic devices are spin transfer torque from spin polarized currents and voltage-controlled magnetic anisotropy (VCMA). Spin tran sfer torque is in widespread development as the write mechanism for next-generation magnetic memory, while VCMA offers the potential of even better energy performance due to smaller Ohmic losses. Here we introduce a 3-terminal magnetic tunnel junction (MTJ) device that combines both of these mechanisms to achieve new functionality: gate-voltage-modulated spin torque switching. This gating makes possible both more energy-efficient switching and also improved architectures for memory and logic applications, including a simple approach for making magnetic memories with a maximum-density cross-point geometry that does not require a control transistor for every MTJ.
Precise estimation of spin Hall angle as well as successful maximization of spin-orbit torque (SOT) form a basis of electronic control of magnetic properties with spintronic functionality. Until now, current-nonlinear Hall effect, or second harmonic Hall voltage has been utilized as one of the methods for estimating spin Hall angle, which is attributed to the magnetization oscillation by SOT. Here, we argue the second harmonic Hall voltage in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$. From the angular, temperature and magnetic field dependence, it is unambiguously shown that the large second harmonic Hall voltage in TI heterostructures is governed not by SOT but mainly by asymmetric magnon scattering mechanism without magnetization oscillation. Thus, this method does not allow an accurate estimation of spin Hall angle when magnons largely contribute to electron scattering. Instead, the SOT contribution in a TI heterostructure is exemplified by current pulse induced non-volatile magnetization switching, which is realized with a current density of $sim 2.5 times 10^{10} mathrm{A/m}^2$, showing its potential as spintronic materials.
Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic aniso tropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiting a magnetic spin Hall effect in noncollinear antiferromagnets, such as Mn3Sn. The magnetic group symmetry of Mn3Sn allows generation of the out-of-plane spin current carrying spin polarization induced by an in-plane charge current. This spin current drives an out-of-plane anti-damping torque providing deterministic switching of perpendicular magnetization of an adjacent Ni/Co multilayer. Compared to the conventional spin-orbit torque devices, the observed switching does not need any external magnetic field and requires much lower current density. Our results demonstrate great prospects of exploiting the magnetic spin Hall effect in noncollinear antiferromagnets for low-power spintronics.
Spin-orbit-torque (SOT) switching using the spin Hall effect (SHE) in heavy metals and topological insulators (TIs) has great potential for ultra-low power magnetoresistive random-access memory (MRAM). To be competitive with conventional spin-transfe r-torque (STT) switching, a pure spin current source with large spin Hall angle (${theta}_{SH}$ > 1) and high electrical conductivity (${sigma} > 10^5 {Omega}^{-1}m^{-1}$) is required. Here, we demonstrate such a pure spin current source: BiSb thin films with ${sigma}{sim}2.5*10^5 {Omega}^{-1}m^{-1}$, ${theta}_{SH}{sim}52$, and spin Hall conductivity ${sigma}_{SH}{sim}1.3*10^7 {hbar}/2e{Omega}^{-1}m^{-1}$ at room temperature. We show that BiSb thin films can generate a colossal spin-orbit field of 2770 Oe/(MA/cm$^2$) and a critical switching current density as low as 1.5 MA/cm$^2$ in Bi$_{0.9}$Sb$_{0.1}$ / MnGa bi-layers. BiSb is the best candidate for the first industrial application of topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا