ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled nonlinear magnetic damping in spin-Hall nano-devices

129   0   0.0 ( 0 )
 نشر من قبل Vladislav Demidov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions. Here, we propose and experimentally demonstrate that nonlinear damping can be controlled by the ellipticity of magnetization precession. By balancing different contributions to anisotropy, we minimize the ellipticity and achieve coherent magnetization oscillations driven by spatially extended spin current injection into a microscopic magnetic disk. Our results provide a novel route for the implementation of efficient active spintronic and magnonic devices driven by spin current.



قيم البحث

اقرأ أيضاً

Spin Hall nano-oscillators (SHNOs) utilize pure spin currents to drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and sometimes mu tually synchronize, in pairs or in short linear chains. Here we demonstrate robust mutual synchronization of two-dimensional SHNO arrays ranging from 2 x 2 to 8 x 8 nano-constrictions, observed both electrically and using micro-Brillouin Light Scattering microscopy. The signal quality factor, $Q=f/Delta f$, increases linearly with number of mutually synchronized nano-constrictions ($N$), reaching 170,000 in the largest arrays. While the microwave peak power first increases as $N^2$, it eventually levels off, indicating a non-zero relative phase shift between nano-constrictions. Our demonstration will enable the use of SHNO arrays in two-dimensional oscillator networks for high-quality microwave signal generation and neuromorphic computing.
We study the current tunable microwave signal properties of nano-constriction based spin Hall nano-oscillators (SHNOs) in oblique magnetic fields as a function of the nano-constriction width, $w=$~50--140 nm. The threshold current is found to scale l inearly with $w$, defining a constant threshold current density of $J_{th}=$ 1.7 $times$ 10$^{8}$ A/cm$^2$. While the current dependence of the microwave frequency shows the same generic non-monotonic behavior for all $wgeqslant$ 80 nm, the quality of the generated microwave signal improves strongly with $w$, showing a linear $w$ dependence for both the total power and the linewidth. As a consequence, the peak power for a 140 nm nano-constriction is about an order of magnitude higher than that of a 80 nm nano-constriction. The smallest nano-constriction, $w=$ 50 nm, exhibits a different behavior with a higher power and a worse linewidth indicating a crossover into a qualitatively different narrow-constriction regime.
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT) /ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromag netic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90 in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.
Non-collinear antiferromagnets can have additional spin Hall effects due to the net chirality of their magnetic spin structure, which provides for more complex spin-transport phenomena compared to ordinary non-magnetic materials. Here we investigated how ferromagnetic resonance of permalloy ($Ni_{80}Fe_{20}$) is modulated by spin Hall effects in adjacent epitaxial $IrMn_{3}$ films. We observe a large dc modulation of the ferromagnetic resonance linewidth for currents applied along the [001] $IrMn_{3}$ direction. This very strong angular dependence of spin-orbit torques from dc currents through the bilayers can be explained by the magnetic spin Hall effect where $IrMn_{3}$ provides novel pathways for modulating magnetization dynamics electrically.
The research field of magnonics proposes a low-energy wave-logic computation technology based on spin waves to complement the established CMOS technology and to provide a basis for emerging unconventional computation architectures, e.g. neuromorphic or quantum computing. However, magnetic damping is a limiting factor for all-magnonic logic circuits and multi-device networks, ultimately rendering mechanisms to efficiently manipulate and amplify spin waves a necessity. In this regard, parallel pumping is a versatile tool since it allows to selectively generate and amplify spin waves. While extensively studied in microscopic systems, nano-scaled systems are lacking investigation to assess the feasibility and potential future use of parallel pumping in magnonics. Here, we investigate a longitudinally magnetized 100 nm-wide magnonic nano-conduit using space and time-resolved micro-focused Brillouin-light-scattering spectroscopy. Employing parallel pumping to generate spin waves, we observe that a non-resonant excitation of dipolar spin-waves is favored over the resonant excitation of short wavelength exchange spin waves. In addition, we utilize this technique to access the effective spin-wave relaxation time of an individual nano-conduit, observing a large relaxation time up to (115.0 +- 7.6) ns. Despite the significant decrease of the ellipticity of the magnetization precession in the investigated nano-conduit, a reasonably small threshold is found rendering parallel parametric amplification feasible on the nano-scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا