ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Aware Gated Recurrent Unit Networks for Road Surface Friction Prediction Using Historical Data

274   0   0.0 ( 0 )
 نشر من قبل Ziyuan Pu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

An accurate road surface friction prediction algorithm can enable intelligent transportation systems to share timely road surface condition to the public for increasing the safety of the road users. Previously, scholars developed multiple prediction models for forecasting road surface conditions using historical data. However, road surface condition data cannot be perfectly collected at every timestamp, e.g. the data collected by on-vehicle sensors may be influenced when vehicles cannot travel due to economic cost issue or weather issues. Such resulted missing values in the collected data can damage the effectiveness and accuracy of the existing prediction methods since they are assumed to have the input data with a fixed temporal resolution. This study proposed a road surface friction prediction model employing a Gated Recurrent Unit network-based decay mechanism (GRU-D) to handle the missing values. The evaluation results present that the proposed GRU-D networks outperform all baseline models. The impact of missing rate on predictive accuracy, learning efficiency and learned decay rate are analyzed as well. The findings can help improve the prediction accuracy and efficiency of forecasting road surface friction using historical data sets with missing values, therefore mitigating the impact of wet or icy road conditions on traffic safety.



قيم البحث

اقرأ أيضاً

Road surface friction significantly impacts traffic safety and mobility. A precise road surface friction prediction model can help to alleviate the influence of inclement road conditions on traffic safety, Level of Service, traffic mobility, fuel eff iciency, and sustained economic productivity. Most related previous studies are laboratory-based methods that are difficult for practical implementation. Moreover, in other data-driven methods, the demonstrated time-series features of road surface conditions have not been considered. This study employed a Long-Short Term Memory (LSTM) neural network to develop a data-driven road surface friction prediction model based on historical data. The proposed prediction model outperformed the other baseline models in terms of the lowest value of predictive performance measurements. The influence of the number of time-lags and the predicting time interval on predictive accuracy was analyzed. In addition, the influence of adding road surface water thickness, road surface temperature and air temperature on predictive accuracy also were investigated. The findings of this study can support road maintenance strategy development and decision making, thus mitigating the impact of inclement road conditions on traffic mobility and safety. Future work includes a modified LSTM-based prediction model development by accommodating flexible time intervals between time-lags.
In order to obtain a model which can process sequential data related to machine translation and speech recognition faster and more accurately, we propose adopting Chrono Initializer as the initialization method of Minimal Gated Unit. We evaluated the method with two tasks: adding task and copy task. As a result of the experiment, the effectiveness of the proposed method was confirmed.
Molecule property prediction is a fundamental problem for computer-aided drug discovery and materials science. Quantum-chemical simulations such as density functional theory (DFT) have been widely used for calculating the molecule properties, however , because of the heavy computational cost, it is difficult to search a huge number of potential chemical compounds. Machine learning methods for molecular modeling are attractive alternatives, however, the development of expressive, accurate, and scalable graph neural networks for learning molecular representations is still challenging. In this work, we propose a simple and powerful graph neural networks for molecular property prediction. We model a molecular as a directed complete graph in which each atom has a spatial position, and introduce a recursive neural network with simple gating function. We also feed input embeddings for every layers as skip connections to accelerate the training. Experimental results show that our model achieves the state-of-the-art performance on the standard benchmark dataset for molecular property prediction.
Sequential data is being generated at an unprecedented pace in various forms, including text and genomic data. This creates the need for efficient compression mechanisms to enable better storage, transmission and processing of such data. To solve thi s problem, many of the existing compressors attempt to learn models for the data and perform prediction-based compression. Since neural networks are known as universal function approximators with the capability to learn arbitrarily complex mappings, and in practice show excellent performance in prediction tasks, we explore and devise methods to compress sequential data using neural network predictors. We combine recurrent neural network predictors with an arithmetic coder and losslessly compress a variety of synthetic, text and genomic datasets. The proposed compressor outperforms Gzip on the real datasets and achieves near-optimal compression for the synthetic datasets. The results also help understand why and where neural networks are good alternatives for traditional finite context models
Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will h ave enough time to take preventive measures. The purpose of this work is to investigate the application of bidirectional LSTM for seizure prediction. In this paper, we trained EEG data from canines on a double Bidirectional LSTM layer followed by a fully connected layer. The data was provided in the form of a Kaggle competition by American Epilepsy Society. The main task was to classify the interictal and preictal EEG clips. Using this model, we obtained an AUC of 0.84 on the test dataset. Which shows that our classifiers performance is above chance level on unseen data. The comparison with the previous work shows that the use of bidirectional LSTM networks can achieve significantly better results than SVM and GRU networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا