ترغب بنشر مسار تعليمي؟ اضغط هنا

Gated Graph Recursive Neural Networks for Molecular Property Prediction

146   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Shindo
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecule property prediction is a fundamental problem for computer-aided drug discovery and materials science. Quantum-chemical simulations such as density functional theory (DFT) have been widely used for calculating the molecule properties, however, because of the heavy computational cost, it is difficult to search a huge number of potential chemical compounds. Machine learning methods for molecular modeling are attractive alternatives, however, the development of expressive, accurate, and scalable graph neural networks for learning molecular representations is still challenging. In this work, we propose a simple and powerful graph neural networks for molecular property prediction. We model a molecular as a directed complete graph in which each atom has a spatial position, and introduce a recursive neural network with simple gating function. We also feed input embeddings for every layers as skip connections to accelerate the training. Experimental results show that our model achieves the state-of-the-art performance on the standard benchmark dataset for molecular property prediction.



قيم البحث

اقرأ أيضاً

Uncertainty quantification (UQ) is an important component of molecular property prediction, particularly for drug discovery applications where model predictions direct experimental design and where unanticipated imprecision wastes valuable time and r esources. The need for UQ is especially acute for neural models, which are becoming increasingly standard yet are challenging to interpret. While several approaches to UQ have been proposed in the literature, there is no clear consensus on the comparative performance of these models. In this paper, we study this question in the context of regression tasks. We systematically evaluate several methods on five benchmark datasets using multiple complementary performance metrics. Our experiments show that none of the methods we tested is unequivocally superior to all others, and none produces a particularly reliable ranking of errors across multiple datasets. While we believe these results show that existing UQ methods are not sufficient for all common use-cases and demonstrate the benefits of further research, we conclude with a practical recommendation as to which existing techniques seem to perform well relative to others.
115 - Hehuan Ma , Yatao Bian , Yu Rong 2020
The crux of molecular property prediction is to generate meaningful representations of the molecules. One promising route is to exploit the molecular graph structure through Graph Neural Networks (GNNs). It is well known that both atoms and bonds sig nificantly affect the chemical properties of a molecule, so an expressive model shall be able to exploit both node (atom) and edge (bond) information simultaneously. Guided by this observation, we present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture to enable more accurate predictions of molecular properties. In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process. This readout component also renders the whole architecture interpretable. We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme that enhances information communication of the two views, which results in the MV-GNN^cross variant. Lastly, we theoretically justify the expressiveness of the two proposed models in terms of distinguishing non-isomorphism graphs. Extensive experiments demonstrate that MV-GNN models achieve remarkably superior performance over the state-of-the-art models on a variety of challenging benchmarks. Meanwhile, visualization results of the node importance are consistent with prior knowledge, which confirms the interpretability power of MV-GNN models.
Molecular property prediction plays a fundamental role in drug discovery to discover candidate molecules with target properties. However, molecular property prediction is essentially a few-shot problem which makes it hard to obtain regular models. In this paper, we propose a property-aware adaptive relation networks (PAR) for the few-shot molecular property prediction problem. In comparison to existing works, we leverage the facts that both substructures and relationships among molecules are different considering various molecular properties. Our PAR is compatible with existing graph-based molecular encoders, and are further equipped with the ability to obtain property-aware molecular embedding and model molecular relation graph adaptively. The resultant relation graph also facilitates effective label propagation within each task. Extensive experiments on benchmark molecular property prediction datasets show that our method consistently outperforms state-of-the-art methods and is able to obtain property-aware molecular embedding and model molecular relation graph properly.
The recent success of graph neural networks has significantly boosted molecular property prediction, advancing activities such as drug discovery. The existing deep neural network methods usually require large training dataset for each property, impai ring their performances in cases (especially for new molecular properties) with a limited amount of experimental data, which are common in real situations. To this end, we propose Meta-MGNN, a novel model for few-shot molecular property prediction. Meta-MGNN applies molecular graph neural network to learn molecular representation and builds a meta-learning framework for model optimization. To exploit unlabeled molecular information and address task heterogeneity of different molecular properties, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights into the former framework, strengthening the whole learning model. Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
Properties of molecules are indicative of their functions and thus are useful in many applications. With the advances of deep learning methods, computational approaches for predicting molecular properties are gaining increasing momentum. However, the re lacks customized and advanced methods and comprehensive tools for this task currently. Here we develop a suite of comprehensive machine learning methods and tools spanning different computational models, molecular representations, and loss functions for molecular property prediction and drug discovery. Specifically, we represent molecules as both graphs and sequences. Built on these representations, we develop novel deep models for learning from molecular graphs and sequences. In order to learn effectively from highly imbalanced datasets, we develop advanced loss functions that optimize areas under precision-recall curves. Altogether, our work not only serves as a comprehensive tool, but also contributes towards developing novel and advanced graph and sequence learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that our methods achieve consistent improvements over prior methods. In particular, our methods achieve #1 ranking in terms of both ROC-AUC and PRC-AUC on the AI Cures Open Challenge for drug discovery related to COVID-19. Our software is released as part of the MoleculeX library under AdvProp.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا