ترغب بنشر مسار تعليمي؟ اضغط هنا

Seizure Prediction Using Bidirectional LSTM

162   0   0.0 ( 0 )
 نشر من قبل Hazrat Ali
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will have enough time to take preventive measures. The purpose of this work is to investigate the application of bidirectional LSTM for seizure prediction. In this paper, we trained EEG data from canines on a double Bidirectional LSTM layer followed by a fully connected layer. The data was provided in the form of a Kaggle competition by American Epilepsy Society. The main task was to classify the interictal and preictal EEG clips. Using this model, we obtained an AUC of 0.84 on the test dataset. Which shows that our classifiers performance is above chance level on unseen data. The comparison with the previous work shows that the use of bidirectional LSTM networks can achieve significantly better results than SVM and GRU networks.

قيم البحث

اقرأ أيضاً

Short-term traffic forecasting based on deep learning methods, especially recurrent neural networks (RNN), has received much attention in recent years. However, the potential of RNN-based models in traffic forecasting has not yet been fully exploited in terms of the predictive power of spatial-temporal data and the capability of handling missing data. In this paper, we focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models. A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting. As a key component of the architecture, the bidirectional LSTM (BDLSM) is exploited to capture the forward and backward temporal dependencies in spatiotemporal data. To deal with missing values in spatial-temporal data, we also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction. The bidirectional version of LSTM-I is incorporated in the SBU-LSTM architecture. Two real-world network-wide traffic state datasets are used to conduct experiments and published to facilitate further traffic prediction research. The prediction performance of multiple types of multi-layer LSTM or BDLSTM models is evaluated. Experimental results indicate that the proposed SBU-LSTM architecture, especially the two-layer BDLSTM network, can achieve superior performance for the network-wide traffic prediction in both accuracy and robustness. Further, comprehensive comparison results show that the proposed data imputation mechanism in the RNN-based models can achieve outstanding prediction performance when the models input data contains different patterns of missing values.
Accurate prediction of epileptic seizures allows patients to take preventive measures in advance to avoid possible injuries. In this work, a novel convolutional neural network (CNN) is proposed to analyze time, frequency, and channel information of e lectroencephalography (EEG) signals. The model uses three-dimensional (3D) kernels to facilitate the feature extraction over the three dimensions. The application of multiscale dilated convolution enables the 3D kernel to have more flexible receptive fields. The proposed CNN model is evaluated with the CHB-MIT EEG database, the experimental results indicate that our model outperforms the existing state-of-the-art, achieves 80.5% accuracy, 85.8% sensitivity and 75.1% specificity.
Classifying limb movements using brain activity is an important task in Brain-computer Interfaces (BCI) that has been successfully used in multiple application domains, ranging from human-computer interaction to medical and biomedical applications. T his paper proposes a novel solution for classification of left/right hand movement by exploiting a Long Short-Term Memory (LSTM) network with attention mechanism to learn the electroencephalogram (EEG) time-series information. To this end, a wide range of time and frequency domain features are extracted from the EEG signals and used to train an LSTM network to perform the classification task. We conduct extensive experiments with the EEG Movement dataset and show that our proposed solution our method achieves improvements over several benchmarks and state-of-the-art methods in both intra-subject and cross-subject validation schemes. Moreover, we utilize the proposed framework to analyze the information as received by the sensors and monitor the activated regions of the brain by tracking EEG topography throughout the experiments.
Electroencephalogram (EEG) is a prominent way to measure the brain activity for studying epilepsy, thereby helping in predicting seizures. Seizure prediction is an active research area with many deep learning based approaches dominating the recent li terature for solving this problem. But these models require a considerable number of patient-specific seizures to be recorded for extracting the preictal and interictal EEG data for training a classifier. The increase in sensitivity and specificity for seizure prediction using the machine learning models is noteworthy. However, the need for a significant number of patient-specific seizures and periodic retraining of the model because of non-stationary EEG creates difficulties for designing practical device for a patient. To mitigate this process, we propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG. Compared to the solutions in the literature, which utilize days of EEG recordings, our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.
Short-term traffic forecasting based on deep learning methods, especially long short-term memory (LSTM) neural networks, has received much attention in recent years. However, the potential of deep learning methods in traffic forecasting has not yet f ully been exploited in terms of the depth of the model architecture, the spatial scale of the prediction area, and the predictive power of spatial-temporal data. In this paper, a deep stacked bidirectional and unidirectional LSTM (SBU- LSTM) neural network architecture is proposed, which considers both forward and backward dependencies in time series data, to predict network-wide traffic speed. A bidirectional LSTM (BDLSM) layer is exploited to capture spatial features and bidirectional temporal dependencies from historical data. To the best of our knowledge, this is the first time that BDLSTMs have been applied as building blocks for a deep architecture model to measure the backward dependency of traffic data for prediction. The proposed model can handle missing values in input data by using a masking mechanism. Further, this scalable model can predict traffic speed for both freeway and complex urban traffic networks. Comparisons with other classical and state-of-the-art models indicate that the proposed SBU-LSTM neural network achieves superior prediction performance for the whole traffic network in both accuracy and robustness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا