ﻻ يوجد ملخص باللغة العربية
We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters such that over 97% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneable-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, and demonstrate CE-SPDC driven atomic spectroscopy. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.
We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wave
The practical prospect of quantum communication and information processing relies on sophisticated single photon pairs which feature controllable waveform, narrow spectrum, excellent purity, fiber compatibility and miniaturized design. For practical
Frequency non-degenerate entangled photon pairs have been employed in quantum communication, imaging, and sensing. To characterize quantum entangled state with long-wavelength (infrared, IR or even terahertz, THz) photon, one needs to either develop
Photon correlations, as measured by Glaubers $n$-th order coherence functions $g^{(n)}$, are highly sought to be minimized and/or maximized. In systems that are coherently driven, so-called blockades can give rise to strong correlations according to
We demonstrate a hybrid approach to the generation of photon pairs of a short wavelength with high brightness, by combining parametric down-conversion (SPDC) and up-conversion techniques. Photon pairs were generated at the wavelength of 1550 nm via S