ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct generation of genuine single-longitudinal-mode narrowband photon pairs

110   0   0.0 ( 0 )
 نشر من قبل Kai-Hong Luo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The practical prospect of quantum communication and information processing relies on sophisticated single photon pairs which feature controllable waveform, narrow spectrum, excellent purity, fiber compatibility and miniaturized design. For practical realizations, stable, miniaturized, low-cost devices are required. Sources with one or some of above performances have been demonstrated already, but it is quite challenging to have a source with all of the described characteristics simultaneously. Here we report on an integrated single-longitudinal-mode non-degenerate narrowband photon pair source, which exhibits all requirements needed for quantum applications. The device is composed of a periodically poled Ti-indiffused lithium niobate waveguide with high reflective dielectric mirror coatings deposited on the waveguide end-faces. Photon pairs with wavelengths around 890 nm and 1320 nm are generated via type II phase-matched parametric down-conversion. Clustering in this dispersive cavity restricts the whole conversion spectrum to one single-longitudinal-mode in a single cluster yielding a narrow bandwidth of only 60 MHz. The high conversion efficiency in the waveguide, together with the spectral clustering in the doubly resonant waveguide, leads to a high brightness of $3times10^4~$pairs/(s$cdot$mW$cdot$MHz). This source exhibits prominent single-longitudinal-mode purity and remarkable temporal shaping capability. Especially, due to temporal broadening, we can observe that the coherence time of the two-photon component of PDC state is actually longer than the one of the single photon states. The miniaturized monolithic design makes this source have various fiber communication applications.

قيم البحث

اقرأ أيضاً

Quantum blockade and entanglement play important roles in quantum information and quantum communication as quantum blockade is an effective mechanism to generate single photons (phonons) and entanglement is a crucial resource for quantum information processing. In this work, we propose a method to generate single entangled photon-phonon pairs in a hybrid optomechanical system. We show that photon blockade, phonon blockade, and photon-phonon correlation and entanglement can be observed via the atom-photon-phonon (tripartite) interaction, under the resonant atomic driving. The correlated and entangled single photons and single phonons, i.e., single entangled photon-phonon pairs, can be generated in both the weak and strong tripartite interaction regimes. Our results may have important applications in the development of highly complex quantum networks.
We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters such that over 97% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneab le-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, and demonstrate CE-SPDC driven atomic spectroscopy. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.
111 - Xin Chen , Xiaoying Li , 2019
It is known that photon pairs generated from pulse-pumped spontaneous parametric processes can be described by independent temporal modes and form a multi-temporal mode entangled state. However, the exact form of the temporal modes is not known even though the joint spectral intensity of photon pairs can be measured by the method of stimulated emission tomography. In this paper, we describe a feedback-iteration method which, combined with the stimulated emission method, can give rise to the exact forms of the independent temporal modes for the temporally entangled photon pairs.
We study the generation of correlated photon pairs via spontaneous four wave mixing in a 15 cm long micro/nano-fiber (MNF). The MNF is properly fabricated to satisfy the phase matching condition for generating the signal and idler photon pairs at the wavelengths of about 1310 and 851 nm, respectively. Photon counting measurements yield a coincidence-to-accidental ratio of 530 for a photon production rate of about 0.002 (0.0005) per pulse in the signal (idler) band. We also analyze the spectral information of the signal photons originated from the spontaneous four wave mixing and Raman scattering. In addition to discovering some unique feature of Raman scattering, we find the bandwidth of the individual signal photons is much greater than the calculated value for the MNF with homogeneous structure. Our investigations indicate the MNF is a promising candidate for developing the sources of nonclassical light and the spectral property of photon pairs can be used to non-invasively test the diameter and homogeneity of the MNF.
We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to acci dental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا