ﻻ يوجد ملخص باللغة العربية
We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.
We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters such that over 97% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneab
We report a fully guided-wave source of polarisation entangled photons based on a periodically poled lithium niobate waveguide mounted in a Sagnac interferometer. We demonstrate the sources quality by converting polarisation entanglement to postselec
Photon pairs produced by the pulse-pumped nonlinear parametric processes have been a workhorse of quantum information science. Engineering the spectral property of the photon pairs is crucial in practical applications. In this article, we demonstrate
We demonstrate an on-demand source of microwave single photons with 71--99% intrinsic quantum efficiency. The source is narrowband (300unite{kHz}) and tuneable over a 600 MHz range around 5.2 GHz. Such a device is an important element in numerous qua
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advant