ﻻ يوجد ملخص باللغة العربية
We demonstrate a hybrid approach to the generation of photon pairs of a short wavelength with high brightness, by combining parametric down-conversion (SPDC) and up-conversion techniques. Photon pairs were generated at the wavelength of 1550 nm via SPDC, and converted to 516.7 nm through up-conversion with the pump at 775 nm. The quantum sum-frequency interference of the up-converted photon pairs exhibited a fringe period of 258.3 nm, which was 6 times shorter than the original wavelength, demonstrating that the energy-time correlation of the photon pairs was preserved. The technique simultaneously provides short fringe period beyond the classical limit and high brightness of the photon pairs.
Sources of photon pairs based on the spontaneous parametric down conversion process are commonly used for long distance quantum communication. The key feature for improving the range of transmission is engineering their spectral properties. Following
We present a quantum fingerprinting protocol relying on two-photon interference which does not require a shared phase reference between the parties preparing optical signals carrying data fingerprints. We show that the scaling of the protocol, in ter
We collect the fluorescence from two trapped atomic ions, and measure quantum interference between photons emitted from the ions. The interference of two photons is a crucial component of schemes to entangle atomic qubits based on a photonic coupling
It is shown that the addition of down-converted photon pairs to coherent laser light enhances the N-photon phase sensitivity due to the quantum interference between components of the same total photon number. Since most of the photons originate from
We employ active feedback to stabilize the frequency of single photons emitted by two separate quantum dots to an atomic standard. The transmission of a single, rubidium-based Faraday filter serves as the error signal for frequency stabilization to l