ﻻ يوجد ملخص باللغة العربية
The second law of thermodynamics can be described as the non-decreasing of the entropy in the irreversible thermodynamic process. Such phenomenon can be quantitatively evaluated with the irreversible entropy generation (IEG), which was recently found to follow a $1/tau$ scaling for the system under a long contact time $tau$ with the thermal bath. This scaling, predicted in many finite-time thermodynamic models, is of great potential in the optimization of heat engines, yet remains lack of direct experimental validation. In this letter, we design an experimental apparatus to test such scaling by compressing dry air in a temperature-controlled water bath. More importantly, we quantitatively verify the optimized control protocol to reduce the IEG. Such optimization shall bring new insight to the practical design of heat engine cycles.
Thermodynamics is usually developed starting from entropy and the maximum entropy principle. We investigate here to what extent one can replace entropy with relative entropy which has several advantages, for example in the context of local quantum fi
We consider scaling of the entanglement entropy across a topological quantum phase transition in one dimension. The change of the topology manifests itself in a sub-leading term, which scales as $L^{-1/alpha}$ with the size of the subsystem $L$, here
State functions play important roles in thermodynamics. Different from the process function, such as the exchanged heat $delta Q$ and the applied work $delta W$, the change of the state function can be expressed as an exact differential. We prove her
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain an
Asking for the optimal protocol of an external control parameter that minimizes the mean work required to drive a nano-scale system from one equilibrium state to another in finite time, Schmiedl and Seifert ({it Phys. Rev. Lett.} {bf 98}, 108301 (200