ﻻ يوجد ملخص باللغة العربية
State functions play important roles in thermodynamics. Different from the process function, such as the exchanged heat $delta Q$ and the applied work $delta W$, the change of the state function can be expressed as an exact differential. We prove here that, for a generic thermodynamic system, only the inverse of the temperature, namely $1/T$, can serve as the integration factor for the exchanged heat $delta Q$. The uniqueness of the integration factor invalidates any attempt to define other state functions associated with the exchanged heat, and in turn, reveals the incorrectness of defining the entransy $E_{vh}=C_VT^2 /2$ as a state function by treating $T$ as an integration factor. We further show the errors in the derivation of entransy by treating the heat capacity $C_V$ as a temperature-independent constant.
The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its corresponding characteristic func
The second law of thermodynamics can be described as the non-decreasing of the entropy in the irreversible thermodynamic process. Such phenomenon can be quantitatively evaluated with the irreversible entropy generation (IEG), which was recently found
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same inten
The uniqueness issue of SDE decomposition theory proposed by Ao and his co-workers has recently been discussed. A comprehensive study to investigate connections among different landscape theories [J. Chem. Phys. 144, 094109 (2016)] has pointed out th
We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power $P