ﻻ يوجد ملخص باللغة العربية
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain and D is the dimension of the MPS matrices. In the first regime MPS can be used to perform finite size scaling (FSS). In the complementary regime the MPS simulations show instead the clear signature of finite entanglement scaling (FES). In the thermodynamic limit (or large N limit), only MPS in the FSS regime maintain a finite overlap with the exact ground state. This observation has implications on how to correctly perform FSS with MPS, as well as on the performance of recent MPS algorithms for systems with PBC. It also gives clear evidence that critical models can actually be simulated very well with MPS by using the right scaling relations; in the appendix, we give an alternative derivation of the result of Pollmann et al. [Phys. Rev. Lett. 102, 255701 (2009)] relating the bond dimension of the MPS to an effective correlation length.
The power of matrix product states to describe infinite-size translational-invariant critical spin chains is investigated. At criticality, the accuracy with which they describe ground state properties of a system is limited by the size $chi$ of the m
We consider scaling of the entanglement entropy across a topological quantum phase transition in one dimension. The change of the topology manifests itself in a sub-leading term, which scales as $L^{-1/alpha}$ with the size of the subsystem $L$, here
We present a unified view of finite-size scaling (FSS) in dimension d above the upper critical dimension, for both free and periodic boundary conditions. We find that the modified FSS proposed some time ago to allow for violation of hyperscaling due
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The un
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distributi