ﻻ يوجد ملخص باللغة العربية
Asking for the optimal protocol of an external control parameter that minimizes the mean work required to drive a nano-scale system from one equilibrium state to another in finite time, Schmiedl and Seifert ({it Phys. Rev. Lett.} {bf 98}, 108301 (2007)) found the Euler-Lagrange equation to be a non-local integro-differential equation of correlation functions. For two linear examples, we show how this integro-differential equation can be solved analytically. For non-linear physical systems we show how the optimal protocol can be found numerically and demonstrate that there may exist several distinct optimal protocols simultaneously, and we present optimal protocols that have one, two, and three jumps, respectively.
For systems in an externally controllable time-dependent potential, the optimal protocol minimizes the mean work spent in a finite-time transition between two given equilibrium states. For overdamped dynamics which ignores inertia effects, the optima
Assuming time-scale separation, a simple and unified theory of thermodynamics and stochastic thermodynamics is constructed for small classical systems strongly interacting with its environment in a controllable fashion. The total Hamiltonian is decom
We present a general formalism for the construction of thermodynamically consistent stochastic models of non-linear electronic circuits. The devices constituting the circuit can have arbitrary I-V curves and may include tunnel junctions, diodes, and
Thermodynamic observables of mesoscopic systems can be expressed as integrated empirical currents. Their fluctuations are bound by thermodynamic uncertainty relations. We introduce the hyperaccurate current as the integrated empirical current with th
We show that the fraction of time a thermodynamic current spends above its average value follows the arcsine law, a prominent result obtained by Levy for Brownian motion. Stochastic currents with long streaks above or below their average are much mor