ترغب بنشر مسار تعليمي؟ اضغط هنا

signADAM: Learning Confidences for Deep Neural Networks

300   0   0.0 ( 0 )
 نشر من قبل Fanhua Shang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a new first-order gradient-based algorithm to train deep neural networks. We first introduce the sign operation of stochastic gradients (as in sign-based methods, e.g., SIGN-SGD) into ADAM, which is called as signADAM. Moreover, in order to make the rate of fitting each feature closer, we define a confidence function to distinguish different components of gradients and apply it to our algorithm. It can generate more sparse gradients than existing algorithms do. We call this new algorithm signADAM++. In particular, both our algorithms are easy to implement and can speed up training of various deep neural networks. The motivation of signADAM++ is preferably learning features from the most different samples by updating large and useful gradients regardless of useless information in stochastic gradients. We also establish theoretical convergence guarantees for our algorithms. Empirical results on various datasets and models show that our algorithms yield much better performance than many state-of-the-art algorithms including SIGN-SGD, SIGNUM and ADAM. We also analyze the performance from multiple perspectives including the loss landscape and develop an adaptive method to further improve generalization. The source code is available at https://github.com/DongWanginxdu/signADAM-Learn-by-Confidence.



قيم البحث

اقرأ أيضاً

Matching two different sets of items, called heterogeneous set-to-set matching problem, has recently received attention as a promising problem. The difficulties are to extract features to match a correct pair of different sets and also preserve two t ypes of exchangeability required for set-to-set matching: the pair of sets, as well as the items in each set, should be exchangeable. In this study, we propose a novel deep learning architecture to address the abovementioned difficulties and also an efficient training framework for set-to-set matching. We evaluate the methods through experiments based on two industrial applications: fashion set recommendation and group re-identification. In these experiments, we show that the proposed method provides significant improvements and results compared with the state-of-the-art methods, thereby validating our architecture for the heterogeneous set matching problem.
Mathematical morphology is a theory and technique to collect features like geometric and topological structures in digital images. Given a target image, determining suitable morphological operations and structuring elements is a cumbersome and time-c onsuming task. In this paper, a morphological neural network is proposed to address this problem. Serving as a nonlinear feature extracting layer in deep learning frameworks, the efficiency of the proposed morphological layer is confirmed analytically and empirically. With a known target, a single-filter morphological layer learns the structuring element correctly, and an adaptive layer can automatically select appropriate morphological operations. For practical applications, the proposed morphological neural networks are tested on several classification datasets related to shape or geometric image features, and the experimental results have confirmed the high computational efficiency and high accuracy.
Deep Neural Networks (DNNs) deliver state-of-the-art performance in many image recognition and understanding applications. However, despite their outstanding performance, these models are black-boxes and it is hard to understand how they make their d ecisions. Over the past few years, researchers have studied the problem of providing explanations of why DNNs predicted their results. However, existing techniques are either obtrusive, requiring changes in model training, or suffer from low output quality. In this paper, we present a novel method, NeuroMask, for generating an interpretable explanation of classification model results. When applied to image classification models, NeuroMask identifies the image parts that are most important to classifier results by applying a mask that hides/reveals different parts of the image, before feeding it back into the model. The mask values are tuned by minimizing a properly designed cost function that preserves the classification result and encourages producing an interpretable mask. Experiments using state-of-the-art Convolutional Neural Networks for image recognition on different datasets (CIFAR-10 and ImageNet) show that NeuroMask successfully localizes the parts of the input image which are most relevant to the DNN decision. By showing a visual quality comparison between NeuroMask explanations and those of other methods, we find NeuroMask to be both accurate and interpretable.
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of parameters and high weights redundancy. Previous works have studied how to prune such CNNs weights. In this paper, we go to another extreme and analyze the performance of a network stacked with a single convolution kernel across layers, as well as other weights sharing techniques. We name it Deep Anchored Convolutional Neural Network (DACNN). Sharing the same kernel weights across layers allows to reduce the model size tremendously, more precisely, the network is compressed in memory by a factor of L, where L is the desired depth of the network, disregarding the fully connected layer for prediction. The number of parameters in DACNN barely increases as the network grows deeper, which allows us to build deep DACNNs without any concern about memory costs. We also introduce a partial shared weights network (DACNN-mix) as well as an easy-plug-in module, coined regulators, to boost the performance of our architecture. We validated our idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our results show that we can save massive amounts of memory with our model, while maintaining a high accuracy performance.
Identity transformations, used as skip-connections in residual networks, directly connect convolutional layers close to the input and those close to the output in deep neural networks, improving information flow and thus easing the training. In this paper, we introduce two alternative linear transforms, orthogonal transformation and idempotent transformation. According to the definition and property of orthogonal and idempotent matrices, the product of multiple orthogonal (same idempotent) matrices, used to form linear transformations, is equal to a single orthogonal (idempotent) matrix, resulting in that information flow is improved and the training is eased. One interesting point is that the success essentially stems from feature reuse and gradient reuse in forward and backward propagation for maintaining the information during flow and eliminating the gradient vanishing problem because of the express way through skip-connections. We empirically demonstrate the effectiveness of the proposed two transformations: similar performance in single-branch networks and even superior in multi-branch networks in comparison to identity transformations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا