ﻻ يوجد ملخص باللغة العربية
We propose a mathematical description of crystal structure: underlying translational periodicity together with the distinct atomic positions up to the symmetry operations in the unit cell. It is consistent with the international table of crystallography. By the Cauchy-Born hypothesis, such a description can be integrated with the theory of continuum mechanics to calculate a derived crystal structure produced by solid-solid phase transformation. In addition, we generalize the expressions for orientation relationship between the parent lattice and the derived lattice. The derived structure rationalizes the lattice parameters and the general equivalent atomic positions that assist the indexing process of X-ray diffraction analysis for low symmetry martensitic materials undergoing phase transformation. The analysis is demonstrated in a CuAlMn shape memory alloy. From its austenite phase (L2_1 face-centered cubic structure), we identify that the derived martensitic structure has the orthorhombic symmetry Pmmm with derived lattice parameters a_dv = 4.36491 AA, b_dv = 5.40865 AA and c_dv = 4.2402 AA, by which the complicated X-ray Laue diffraction pattern can be well indexed, and the orientation relationship can be verified.
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with differen
Adding thermal conductivity enhancements to increase thermal power in solid-liquid phase-change thermal energy storage modules compromises volumetric energy density and often times reduces the mass and volume of active phase change material (PCM) by
A phase-field crystal model based on the density-field approach incorporating high-order interparticle direct correlations is developed to study vapor-liquid-solid coexistence and transitions within a single continuum description. Conditions for the
Ternary nitride materials hold promise for many optical, electronic, and refractory applications yet their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gasses are used to manipulate the effective chemic
We present the results of an experiment where amorphous carbon was irradiated by femtosecond x-ray free electron laser pulses. The 830 eV laser pulses induce a phase transition in the material which is characterized ex-situ. The phase transition ener