ﻻ يوجد ملخص باللغة العربية
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with different porosities under normal compression stresses. This instability is triggered by a finite jump in the free energy density across the interface, and it leads to the formation of finger-like structures aligned with the principal direction of compaction. The model is proposed as an explanation for the roughening of stylolites - irregular interfaces associated with the compaction of sedimentary rocks that fluctuate about a plane perpendicular to the principal direction of compaction.
We present analytical results and kinetic Monte Carlo simulations for the mobility and microscopic structure of solid-on-solid (SOS) interfaces driven far from equilibrium by an external force, such as an applied field or (electro)chemical potential
We propose a mathematical description of crystal structure: underlying translational periodicity together with the distinct atomic positions up to the symmetry operations in the unit cell. It is consistent with the international table of crystallogra
Nucleation of a solid in solid is initiated by the appearance of distinct dynamical heterogeneities, consisting of `active particles whose trajectories show an abrupt transition from ballistic to diffusive, coincident with the discontinuous transitio
We study the effect of temperature up to 1000K on the structure of dense molecular para-hydrogen and ortho-deuterium, using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close pa
The existed theories and methods for calculating interfacial thermal conductance of solid-solid interface lead to diverse values that deviate from experimental measurements. In this letter, We propose a model to estimate the ITC at high temperature w