ﻻ يوجد ملخص باللغة العربية
A phase-field crystal model based on the density-field approach incorporating high-order interparticle direct correlations is developed to study vapor-liquid-solid coexistence and transitions within a single continuum description. Conditions for the realization of the phase coexistence and transition sequence are systematically analyzed and shown to be satisfied by a broad range of model parameters, demonstrating the high flexibility and applicability of the model. Both temperature-density and temperature-pressure phase diagrams are identified, while structural evolution and coexistence among the three phases are examined through dynamical simulations. The model is also able to produce some temperature and pressure related material properties, including effects of thermal expansion and pressure on equilibrium lattice spacing, and temperature dependence of saturation vapor pressure. This model can be used as an effective approach for investigating a variety of material growth and deposition processes based on vapor-solid, liquid-solid, and vapor-liquid-solid growth.
We propose a two-dimensional phase-field-crystal model for the (2$times$1)-(1$times$1) phase transitions of Si(001) and Ge(001) surfaces. The dimerization in the 2$times$1 phase is described with a phase-field-crystal variable which is determined by
Chemical vapor deposition (CVD) of two-dimensional (2D) materials such as monolayer MoS2 typically involves the conversion of vapor-phase precursors to a solid product in a process that may be described as a vapor-solid-solid (VSS) mode. Here, we rep
In this paper the relationship between the density functional theory of freezing and phase field modeling is examined. More specifically a connection is made between the correlation functions that enter density functional theory and the free energy f
Kinetics of separation between the low and high density phases in a single component Lennard-Jones model has been studied via molecular dynamics simulations, at a very low temperature, in the space dimension $d=2$. For densities close to the vapor (l
Vapor transportation is the core process in growing transition-metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). One inevitable problem is the spatial inhomogeneity of the vapors. The non-stoichiometric supply of transition-metal prec