ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Attentive Bag-of-Entities Model for Text Classification

158   0   0.0 ( 0 )
 نشر من قبل Ikuya Yamada
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study proposes a Neural Attentive Bag-of-Entities model, which is a neural network model that performs text classification using entities in a knowledge base. Entities provide unambiguous and relevant semantic signals that are beneficial for capturing semantics in texts. We combine simple high-recall entity detection based on a dictionary, to detect entities in a document, with a novel neural attention mechanism that enables the model to focus on a small number of unambiguous and relevant entities. We tested the effectiveness of our model using two standard text classification datasets (i.e., the 20 Newsgroups and R8 datasets) and a popular factoid question answering dataset based on a trivia quiz game. As a result, our model achieved state-of-the-art results on all datasets. The source code of the proposed model is available online at https://github.com/wikipedia2vec/wikipedia2vec.



قيم البحث

اقرأ أيضاً

Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer lear ning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with th e practical problems of fixed corpus level graph structure which do not support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.
In this work we propose a novel attention-based neural network model for the task of fine-grained entity type classification that unlike previously proposed models recursively composes representations of entity mention contexts. Our model achieves st ate-of-the-art performance with 74.94% loose micro F1-score on the well-established FIGER dataset, a relative improvement of 2.59%. We also investigate the behavior of the attention mechanism of our model and observe that it can learn contextual linguistic expressions that indicate the fine-grained category memberships of an entity.
61 - Wei Li , Shuheng Li , Shuming Ma 2019
The complicated syntax structure of natural language is hard to be explicitly modeled by sequence-based models. Graph is a natural structure to describe the complicated relation between tokens. The recent advance in Graph Neural Networks (GNN) provid es a powerful tool to model graph structure data, but simple graph models such as Graph Convolutional Networks (GCN) suffer from over-smoothing problem, that is, when stacking multiple layers, all nodes will converge to the same value. In this paper, we propose a novel Recursive Graphical Neural Networks model (ReGNN) to represent text organized in the form of graph. In our proposed model, LSTM is used to dynamically decide which part of the aggregated neighbor information should be transmitted to upper layers thus alleviating the over-smoothing problem. Furthermore, to encourage the exchange between the local and global information, a global graph-level node is designed. We conduct experiments on both single and multiple label text classification tasks. Experiment results show that our ReGNN model surpasses the strong baselines significantly in most of the datasets and greatly alleviates the over-smoothing problem.
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the correspondin g parameters such as the substitution rate artificially, which require a lot of prior knowledge and are prone to fall into the sub-optimum. Besides, the number of editing operations is limited in the previous methods, which decreases the diversity of the augmented data and thus restricts the performance gain. To overcome the above limitations, we propose a framework named Text AutoAugment (TAA) to establish a compositional and learnable paradigm for data augmentation. We regard a combination of various operations as an augmentation policy and utilize an efficient Bayesian Optimization algorithm to automatically search for the best policy, which substantially improves the generalization capability of models. Experiments on six benchmark datasets show that TAA boosts classification accuracy in low-resource and class-imbalanced regimes by an average of 8.8% and 9.7%, respectively, outperforming strong baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا