ﻻ يوجد ملخص باللغة العربية
In this work we propose a novel attention-based neural network model for the task of fine-grained entity type classification that unlike previously proposed models recursively composes representations of entity mention contexts. Our model achieves state-of-the-art performance with 74.94% loose micro F1-score on the well-established FIGER dataset, a relative improvement of 2.59%. We also investigate the behavior of the attention mechanism of our model and observe that it can learn contextual linguistic expressions that indicate the fine-grained category memberships of an entity.
In this work, we investigate several neural network architectures for fine-grained entity type classification. Particularly, we consider extensions to a recently proposed attentive neural architecture and make three key contributions. Previous work o
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input image. On the other hand, humans c
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of
As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic