ﻻ يوجد ملخص باللغة العربية
The complicated syntax structure of natural language is hard to be explicitly modeled by sequence-based models. Graph is a natural structure to describe the complicated relation between tokens. The recent advance in Graph Neural Networks (GNN) provides a powerful tool to model graph structure data, but simple graph models such as Graph Convolutional Networks (GCN) suffer from over-smoothing problem, that is, when stacking multiple layers, all nodes will converge to the same value. In this paper, we propose a novel Recursive Graphical Neural Networks model (ReGNN) to represent text organized in the form of graph. In our proposed model, LSTM is used to dynamically decide which part of the aggregated neighbor information should be transmitted to upper layers thus alleviating the over-smoothing problem. Furthermore, to encourage the exchange between the local and global information, a global graph-level node is designed. We conduct experiments on both single and multiple label text classification tasks. Experiment results show that our ReGNN model surpasses the strong baselines significantly in most of the datasets and greatly alleviates the over-smoothing problem.
Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a heterog
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with th
Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a smal
This study proposes a Neural Attentive Bag-of-Entities model, which is a neural network model that performs text classification using entities in a knowledge base. Entities provide unambiguous and relevant semantic signals that are beneficial for cap