ﻻ يوجد ملخص باللغة العربية
We introduce a novel mechanism, called timid/bold coding, by which feedback can be used to improve coding performance. For a certain class of DMCs, called compound-dispersion channels, we show that timid/bold coding allows for an improved second-order coding rate compared with coding without feedback. For DMCs that are not compound dispersion, we show that feedback does not improve the second-order coding rate. Thus we completely determine the class of DMCs for which feedback improves the second-order coding rate. An upper bound on the second-order coding rate is provided for compound-dispersion DMCs. We also show that feedback does not improve the second-order coding rate for very noisy DMCs. The main results are obtained by relating feedback codes to certain controlled diffusions.
We provide a practical implementation of the rubber method of Ahlswede et al. for binary alphabets. The idea is to create the skeleton sequence therein via an arithmetic decoder designed for a particular $k$-th order Markov chain. For the stochastic
Integer-forcing source coding has been proposed as a low-complexity method for compression of distributed correlated Gaussian sources. In this scheme, each encoder quantizes its observation using the same fine lattice and reduces the result modulo a
In this paper, we consider the power allocation (PA) problem in cognitive radio networks (CRNs) employing nonorthogonal multiple access (NOMA) technique. Specifically, we aim to maximize the number of admitted secondary users (SUs) and their throughp
The performance limits of scalar coding for multiple-input single-output channels are revisited in this work. By employing randomized beamforming, Narula et al. demonstrated that the loss of scalar coding is universally bounded by ~ 2.51 dB (or 0.833
Three areas of ongoing research in channel coding are surveyed, and recent developments are presented in each area: spatially coupled Low-Density Parity-Check (LDPC) codes, non-binary LDPC codes, and polar coding.