ﻻ يوجد ملخص باللغة العربية
The performance limits of scalar coding for multiple-input single-output channels are revisited in this work. By employing randomized beamforming, Narula et al. demonstrated that the loss of scalar coding is universally bounded by ~ 2.51 dB (or 0.833 bits/symbol) for any number of antennas and channel gains. In this work, by using randomized beamforming in conjunction with space-time codes, it is shown that the bound can be tightened to ~ 1.1 dB (or 0.39 bits/symbol).
A major performance degrading factor in free space optical communication (FSO) systems is atmospheric turbulence. Spatial diversity techniques provide a promising approach to mitigate turbulence-induced fading. In this paper, we study the error rate
We construct a joint coordination-channel polar coding scheme for strong coordination of actions between two agents $mathsf X$ and $mathsf Y$, which communicate over a discrete memoryless channel (DMC) such that the joint distribution of actions foll
The error exponent of Markov channels with feedback is studied in the variable-length block-coding setting. Burnashevs classic result is extended and a single letter characterization for the reliability function of finite-state Markov channels is pre
We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after c
Orthogonal time frequency space (OTFS) modulation is a recently developed multi-carrier multi-slot transmission scheme for wireless communications in high-mobility environments. In this paper, the error performance of coded OTFS modulation over high-