ﻻ يوجد ملخص باللغة العربية
Integer-forcing source coding has been proposed as a low-complexity method for compression of distributed correlated Gaussian sources. In this scheme, each encoder quantizes its observation using the same fine lattice and reduces the result modulo a coarse lattice. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. It has been observed that the method works very well for most but not all source covariance matrices. The present work quantifies the measure of bad covariance matrices by studying the probability that integer-forcing source coding fails as a function of the allocated rate, %in excess of the %Berger-Tung benchmark, where the probability is with respect to a random orthonormal transformation that is applied to the sources prior to quantization. For the important case where the signals to be compressed correspond to the antenna inputs of relays in an i.i.d. Rayleigh fading environment, this orthonormal transformation can be viewed as being performed by nature. Hence, the results provide performance guarantees for distributed source coding via integer forcing in this scenario.
Integer-Forcing (IF) is a new framework, based on compute-and-forward, for decoding multiple integer linear combinations from the output of a Gaussian multiple-input multiple-output channel. This work applies the IF approach to arrive at a new low-co
The performance of integer-forcing equalization for communication over the compound multiple-input multipleoutput channel is investigated. An upper bound on the resulting outage probability as a function of the gap to capacity has been derived previo
Integer-forcing (IF) linear receiver has been recently introduced for multiple-input multiple-output (MIMO) fading channels. The receiver has to compute an integer linear combination of the symbols as a part of the decoding process. In particular, th
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g
Integer-forcing receivers generalize traditional linear receivers for the multiple-input multiple-output channel by decoding integer-linear combinations of the transmitted streams, rather then the streams themselves. Previous works have shown that th