ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the power allocation (PA) problem in cognitive radio networks (CRNs) employing nonorthogonal multiple access (NOMA) technique. Specifically, we aim to maximize the number of admitted secondary users (SUs) and their throughput, without violating the interference tolerance threshold of the primary users (PUs). This problem is divided into a two-phase PA process: a) maximizing the number of admitted SUs; b) maximizing the minimum throughput among the admitted SUs. To address the first phase, we apply a sequential and iterative PA algorithm, which fully exploits the characteristics of the NOMA-based system. Following this, the second phase is shown to be quasiconvex and is optimally solved via the bisection method. Furthermore, we prove the existence of a unique solution for the second phase and propose another PA algorithm, which is also optimal and significantly reduces the complexity in contrast with the bisection method. Simulation results verify the effectiveness of the proposed two-phase PA scheme.
A non-orthogonal multiple access (NOMA) approach to user signal power allocation called Fair-NOMA is introduced. Fair-NOMA is the application of NOMA in such a way that two mobile users have the opportunity to always achieve at least the information
This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overh
A non-orthogonal multiple access (NOMA) approach that always outperforms orthogonal multiple access (OMA) called Fair-NOMA is introduced. In Fair-NOMA, each mobile user is allocated its share of the transmit power such that its capacity is always gre
Mobile edge computing (MEC) can enhance the computing capability of mobile devices, and non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two technologies can effectively benefit the network with spectrum and energy e
The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate $R_0$, the limits on the power allocation coefficients for each user are derived, such that a