ﻻ يوجد ملخص باللغة العربية
A direct patterning technique of gallium-irradiated superconducting silicon has been established by focused gallium-ion beam without any mask-based lithography process. The electrical transport measurements for line and square shaped patterns of gallium-irradiated silicon were carried out under self-field and magnetic field up to 7 T. Sharp superconducting transitions were observed in both patterns at temperature of 7 K. The line pattern exhibited a signature of higher onset temperature above 10 K. A critical dose amount to obtain the superconducting gallium-irradiated silicon was investigated by the fabrication of various samples with different doses. This technique can be used as a simple fabrication method for superconducting device.
In a recent paper Tettamanzi et al (2009 Nanotechnology bf{20} 465302) describe the fabrication of superconducting Nb nanowires using a focused ion beam. They interpret their conductivity data in the framework of thermal and quantum phase slips below
We have fabricated C-Ga-O nanowires by gallium focused ion beam-induced deposition from the carbon-based precursor phenanthrene. The electrical conductivity of the nanowires is weakly temperature dependent below 300 K, and indicates a transition to a
Superconducting nanowires, with a critical temperature of 5.2 K, have been synthesized using an ion-beam-induced deposition, with a Gallium focused ion beam and Tungsten Carboxyl, W(CO)6, as precursor. The films are amorphous, with atomic concentrati
Making use of focused Ga-ion beam (FIB) fabrication technology, the evolution with device dimension of the low-temperature electrical properties of Nb nanowires has been examined in a regime where crossover from Josephson-like to insulating behaviour
The deposition of boron-doped amorphous carbon thin films on SiO2 substrate was achieved via a focused ion beam-assisted chemical vapor deposition of triphenyl borane (C18H15B) and triphenyl borate (C18H15BO3). The existence of boron in the deposited