ﻻ يوجد ملخص باللغة العربية
Given a finite set of unknown distributions, or arms, that can be sampled, we consider the problem of identifying the one with the largest mean using a delta-correct algorithm (an adaptive, sequential algorithm that restricts the probability of error to a specified delta) that has minimum sample complexity. Lower bounds for delta-correct algorithms are well known. Delta-correct algorithms that match the lower bound asymptotically as delta reduces to zero have been previously developed when arm distributions are restricted to a single parameter exponential family. In this paper, we first observe a negative result that some restrictions are essential, as otherwise under a delta-correct algorithm, distributions with unbounded support would require an infinite number of samples in expectation. We then propose a delta-correct algorithm that matches the lower bound as delta reduces to zero under the mild restriction that a known bound on the expectation of a non-negative, continuous, increasing convex function (for example, the squared moment) of the underlying random variables, exists. We also propose batch processing and identify near-optimal batch sizes to substantially speed up the proposed algorithm. The best-arm problem has many learning applications, including recommendation systems and product selection. It is also a well studied classic problem in the simulation community.
In the classical best arm identification (Best-$1$-Arm) problem, we are given $n$ stochastic bandit arms, each associated with a reward distribution with an unknown mean. We would like to identify the arm with the largest mean with probability at lea
Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are
In the Best-$k$-Arm problem, we are given $n$ stochastic bandit arms, each associated with an unknown reward distribution. We are required to identify the $k$ arms with the largest means by taking as few samples as possible. In this paper, we make pr
We give a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the `Track-and-Stop strategy, which we prove to be asymptoticall
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-ba