ﻻ يوجد ملخص باللغة العربية
In the classical best arm identification (Best-$1$-Arm) problem, we are given $n$ stochastic bandit arms, each associated with a reward distribution with an unknown mean. We would like to identify the arm with the largest mean with probability at least $1-delta$, using as few samples as possible. Understanding the sample complexity of Best-$1$-Arm has attracted significant attention since the last decade. However, the exact sample complexity of the problem is still unknown. Recently, Chen and Li made the gap-entropy conjecture concerning the instance sample complexity of Best-$1$-Arm. Given an instance $I$, let $mu_{[i]}$ be the $i$th largest mean and $Delta_{[i]}=mu_{[1]}-mu_{[i]}$ be the corresponding gap. $H(I)=sum_{i=2}^nDelta_{[i]}^{-2}$ is the complexity of the instance. The gap-entropy conjecture states that $Omegaleft(H(I)cdotleft(lndelta^{-1}+mathsf{Ent}(I)right)right)$ is an instance lower bound, where $mathsf{Ent}(I)$ is an entropy-like term determined by the gaps, and there is a $delta$-correct algorithm for Best-$1$-Arm with sample complexity $Oleft(H(I)cdotleft(lndelta^{-1}+mathsf{Ent}(I)right)+Delta_{[2]}^{-2}lnlnDelta_{[2]}^{-1}right)$. If the conjecture is true, we would have a complete understanding of the instance-wise sample complexity of Best-$1$-Arm. We make significant progress towards the resolution of the gap-entropy conjecture. For the upper bound, we provide a highly nontrivial algorithm which requires [Oleft(H(I)cdotleft(lndelta^{-1} +mathsf{Ent}(I)right)+Delta_{[2]}^{-2}lnlnDelta_{[2]}^{-1}mathrm{polylog}(n,delta^{-1})right)] samples in expectation. For the lower bound, we show that for any Gaussian Best-$1$-Arm instance with gaps of the form $2^{-k}$, any $delta$-correct monotone algorithm requires $Omegaleft(H(I)cdotleft(lndelta^{-1} + mathsf{Ent}(I)right)right)$ samples in expectation.
In the Best-$k$-Arm problem, we are given $n$ stochastic bandit arms, each associated with an unknown reward distribution. We are required to identify the $k$ arms with the largest means by taking as few samples as possible. In this paper, we make pr
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-ba
Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are
We give a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the `Track-and-Stop strategy, which we prove to be asymptoticall
We study $(epsilon, delta)$-PAC best arm identification, where a decision-maker must identify an $epsilon$-optimal arm with probability at least $1 - delta$, while minimizing the number of arm pulls (samples). Most of the work on this topic is in the