ﻻ يوجد ملخص باللغة العربية
We give a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the `Track-and-Stop strategy, which we prove to be asymptotically optimal. It consists in a new sampling rule (which tracks the optimal proportions of arm draws highlighted by the lower bound) and in a stopping rule named after Chernoff, for which we give a new analysis.
In the classical best arm identification (Best-$1$-Arm) problem, we are given $n$ stochastic bandit arms, each associated with a reward distribution with an unknown mean. We would like to identify the arm with the largest mean with probability at lea
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-ba
Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successiv
We study $(epsilon, delta)$-PAC best arm identification, where a decision-maker must identify an $epsilon$-optimal arm with probability at least $1 - delta$, while minimizing the number of arm pulls (samples). Most of the work on this topic is in the