ﻻ يوجد ملخص باللغة العربية
We experimentally investigate the influence of the orientation of optically pumped magnetometers in Earths magnetic field. We focus our analysis to an operational mode that promises femtotesla field resolu-tions at such field strengths. For this so-called light-shift dispersed Mz(LSD-Mz) regime, we focus on the key parameters defining its performance. That are the reconstructed Larmor frequency, the transfer function between output signal and magnetic field amplitude as well as the shot noise limited field resolution. We demonstrate that due to the use of two well balanced laser beams for optical pumping with different helicities the heading error as well as the field sensitivity of a detector both are only weakly influenced by the heading in a large orientation angle range.
We present a portable optically pumped magnetometer instrument for ultra-sensitive measurements within the Earths magnetic field. The central part of the system is a sensor head operating a MEMS-based Cs vapor cell in the light-shift dispersed Mz mod
When optically pumped magnetometers are aimed for the use in Earths magnetic field, the orientation of the sensor to the field direction is of special importance to achieve accurate measurement result. Measurement errors and inaccuracies related to t
We study the effect of optical squeezing on the performance of a sensitive, quantum-noise-limited optically-pumped magnetometer. We use Bell-Bloom optical pumping to excite a $^{87}$Rb vapor and Faraday rotation to detect spin precession. The sub-$ma
Low-threshold lasing under pulsed optical pumping is demonstrated at room temperature for III-nitride microdisks with InGaN/GaN quantum wells on Si in the blue spectral range. Thresholds in the range of 18 kW/cm2 have been achieved along with narrow
Under negative feedback, the quality factor Q of a radio-frequency magnetometer can be decreased by more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly damped, preparing the magnetometer for