ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance analysis of an optically pumped magnetometer in Earths magnetic field

90   0   0.0 ( 0 )
 نشر من قبل Gregor Oelsner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally investigate the influence of the orientation of optically pumped magnetometers in Earths magnetic field. We focus our analysis to an operational mode that promises femtotesla field resolu-tions at such field strengths. For this so-called light-shift dispersed Mz(LSD-Mz) regime, we focus on the key parameters defining its performance. That are the reconstructed Larmor frequency, the transfer function between output signal and magnetic field amplitude as well as the shot noise limited field resolution. We demonstrate that due to the use of two well balanced laser beams for optical pumping with different helicities the heading error as well as the field sensitivity of a detector both are only weakly influenced by the heading in a large orientation angle range.



قيم البحث

اقرأ أيضاً

We present a portable optically pumped magnetometer instrument for ultra-sensitive measurements within the Earths magnetic field. The central part of the system is a sensor head operating a MEMS-based Cs vapor cell in the light-shift dispersed Mz mod e. It is connected to a compact, battery-driven electronics module by a flexible cable. We briefly review the working principles of the device and detail on the realization of both, sensor head and electronics. We show shielded and unshielded measurements within a static magnetic field amplitude of 50 uT demonstrating a noise level of the sensor system down to 100 fT/sqrt{Hz} and a sensor bandwidth of several 100 Hz. In a detailed analysis of sensor noise we reveal the system to be limited by technical sources with straightforward strategies for further improvement towards its fundamental noise limit of 12 fT/sqrt{Hz}. We compare our sensors performance to a commercial SQUID system in a measurement environment typical for geomagnetic observatory practice and geomagnetic prospection.
When optically pumped magnetometers are aimed for the use in Earths magnetic field, the orientation of the sensor to the field direction is of special importance to achieve accurate measurement result. Measurement errors and inaccuracies related to t he heading of the sensor can be an even more severe problem in the case of special operational configurations, such as for example the use of strong off-resonant pumping. We systematically study the main contributions to the heading error in systems that promise high magnetic field resolutions at Earths magnetic field strengths, namely the non-linear Zeeman splitting and the orientation dependent light shift. The good correspondence of our theoretical analysis to experimental data demonstrates that both of these effects are related to a heading dependent modification of the interaction between the laser light and the dipole moment of the atoms. Also, our results promise a compensation of both effects using a combination of clockwise and counter clockwise circular polarization.
We study the effect of optical squeezing on the performance of a sensitive, quantum-noise-limited optically-pumped magnetometer. We use Bell-Bloom optical pumping to excite a $^{87}$Rb vapor and Faraday rotation to detect spin precession. The sub-$ma thrm{pT}/sqrt{mathrm{Hz}}$ sensitivity is limited by spin projection noise (photon shot noise) at low (high) frequencies. Probe polarization squeezing both improves high-frequency sensitivity and increases signal bandwidth. The accompanying polarization anti-squeezing perturbs only an unmeasured spin component, so there is no loss of sensitivity at any frequency. The method is compatible with high-density and multi-pass techniques that reach extreme sensitivity.
Low-threshold lasing under pulsed optical pumping is demonstrated at room temperature for III-nitride microdisks with InGaN/GaN quantum wells on Si in the blue spectral range. Thresholds in the range of 18 kW/cm2 have been achieved along with narrow linewidths of 0.07 nm and a large peak to background dynamic of 300. We compare this threshold range with the one that can be calculated using a rate equation model. We show that thresholds in the few kW/cm2 range constitute the best that can be achieved with III-nitride quantum wells at room temperature. The sensitivity of lasing on the fabrication process is also discussed.
Under negative feedback, the quality factor Q of a radio-frequency magnetometer can be decreased by more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly damped, preparing the magnetometer for detection of the desired signal. We find that noise is also suppressed under such spin-damping, with a characteristic spectral response corresponding to the type of noise; therefore magnetic, photon-shot, and spin-projection noise can be measured distinctly. While the suppression of resonant photon-shot noise implies the closed-loop production of polarization-squeezed light, the suppression of resonant spin-projection noise does not imply spin-squeezing, rather simply the broadening of the noise spectrum with Q. Furthermore, the application of spin-damping during phase-sensitive detection suppresses both signal and noise in such a way as to increase the sensitivity bandwidth. We demonstrate a three-fold increase in the magnetometers bandwidth while maintaining 0.3 fT/surdHz sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا