ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Damping in an RF Atomic Magnetometer

124   0   0.0 ( 0 )
 نشر من قبل Orang Alem
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Under negative feedback, the quality factor Q of a radio-frequency magnetometer can be decreased by more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly damped, preparing the magnetometer for detection of the desired signal. We find that noise is also suppressed under such spin-damping, with a characteristic spectral response corresponding to the type of noise; therefore magnetic, photon-shot, and spin-projection noise can be measured distinctly. While the suppression of resonant photon-shot noise implies the closed-loop production of polarization-squeezed light, the suppression of resonant spin-projection noise does not imply spin-squeezing, rather simply the broadening of the noise spectrum with Q. Furthermore, the application of spin-damping during phase-sensitive detection suppresses both signal and noise in such a way as to increase the sensitivity bandwidth. We demonstrate a three-fold increase in the magnetometers bandwidth while maintaining 0.3 fT/surdHz sensitivity.



قيم البحث

اقرأ أيضاً

70 - S. Afach , G. Ban , G. Bison 2015
We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 $mu$T magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 $mu$rad for integration times from 10 s up to 2000 s.
We report an all-optical atomic vector magnetometer using dual Bell-Bloom optical pumping beams in a Rb vapor cell. This vector magnetometer consists of two orthogonal optical pumping beams, with amplitude modulations at $^{85}$Rb and $^{87}$Rb Larmo r frequencies respectively. We simultaneously detect atomic signals excited by these two pumping beams using a single probe beam in the third direction, and extract the field orientation information using the phase delays between the modulated atomic signals and the driving beams. By adding a Herriott cavity inside the vapor cell, we improve the magnetometer sensitivity. We study the performance of this vector magnetometer in a magnetic field ranging from 100~mG to 500~mG, and demonstrate a field angle sensitivity better than 10~${mu}$rad/Hz$^{1/2}$ above 10~Hz.
We demonstrate electromagnetic induction imaging with an unshielded, portable radio-frequency atomic magnetometer scanning over the target object. This configuration satisfies standard requirements in typical applications, from security screening to medical imaging. The ability to scan the magnetometer over the object relies on the miniaturization of the sensor head and on the active compensation of the ambient magnetic field. Additionally, a procedure is implemented to extract high-quality images from the recorded spatial dependent magnetic resonance. The procedure is shown to be effective in suppressing the detrimental effects of the spatial variation of the magnetic environment.
We report on a single-channel rubidium radio-frequency atomic magnetometer operating in un-shielded environments and near room temperature with a measured sensitivity of 130 fT/sqrt{Hz}. We demonstrate consistent, narrow-bandwidth operation across th e kHz - MHz band, corresponding to three orders of magnitude of magnetic field amplitude. A compensation coil system controlled by a feedback loop actively and automatically stabilizes the magnetic field around the sensor. We measure a reduction of the 50 Hz noise contribution by an order of magnitude. The small effective sensor volume, 57 mm^3, increases the spatial resolution of the measurements. Low temperature operation, without any magnetic shielding, coupled with the broad tunability, and low beam power, dramatically extends the range of potential field applications for our device.
We describe the development of a simple atomic magnetometer using $^{87}$Rb vapor suitable for Earth magnetic field monitoring. The magnetometer is based on time-domain determination of the transient precession frequency of the atomic alignment aroun d the measured field. A sensitivity of 1.5 nT/$sqrt{Hz}$ is demonstrated on the measurement of the Earth magnetic field in the laboratory. We discuss the different parameters determining the magnetometer precision and accuracy and predict a sensitivity of 30 pT/$sqrt{Hz}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا