ﻻ يوجد ملخص باللغة العربية
Under negative feedback, the quality factor Q of a radio-frequency magnetometer can be decreased by more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly damped, preparing the magnetometer for detection of the desired signal. We find that noise is also suppressed under such spin-damping, with a characteristic spectral response corresponding to the type of noise; therefore magnetic, photon-shot, and spin-projection noise can be measured distinctly. While the suppression of resonant photon-shot noise implies the closed-loop production of polarization-squeezed light, the suppression of resonant spin-projection noise does not imply spin-squeezing, rather simply the broadening of the noise spectrum with Q. Furthermore, the application of spin-damping during phase-sensitive detection suppresses both signal and noise in such a way as to increase the sensitivity bandwidth. We demonstrate a three-fold increase in the magnetometers bandwidth while maintaining 0.3 fT/surdHz sensitivity.
We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 $mu$T magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was
We report an all-optical atomic vector magnetometer using dual Bell-Bloom optical pumping beams in a Rb vapor cell. This vector magnetometer consists of two orthogonal optical pumping beams, with amplitude modulations at $^{85}$Rb and $^{87}$Rb Larmo
We demonstrate electromagnetic induction imaging with an unshielded, portable radio-frequency atomic magnetometer scanning over the target object. This configuration satisfies standard requirements in typical applications, from security screening to
We report on a single-channel rubidium radio-frequency atomic magnetometer operating in un-shielded environments and near room temperature with a measured sensitivity of 130 fT/sqrt{Hz}. We demonstrate consistent, narrow-bandwidth operation across th
We describe the development of a simple atomic magnetometer using $^{87}$Rb vapor suitable for Earth magnetic field monitoring. The magnetometer is based on time-domain determination of the transient precession frequency of the atomic alignment aroun