ﻻ يوجد ملخص باللغة العربية
We study the effect of optical squeezing on the performance of a sensitive, quantum-noise-limited optically-pumped magnetometer. We use Bell-Bloom optical pumping to excite a $^{87}$Rb vapor and Faraday rotation to detect spin precession. The sub-$mathrm{pT}/sqrt{mathrm{Hz}}$ sensitivity is limited by spin projection noise (photon shot noise) at low (high) frequencies. Probe polarization squeezing both improves high-frequency sensitivity and increases signal bandwidth. The accompanying polarization anti-squeezing perturbs only an unmeasured spin component, so there is no loss of sensitivity at any frequency. The method is compatible with high-density and multi-pass techniques that reach extreme sensitivity.
We experimentally investigate the influence of the orientation of optically pumped magnetometers in Earths magnetic field. We focus our analysis to an operational mode that promises femtotesla field resolu-tions at such field strengths. For this so-c
Electromagnetically induced transparency (EIT) in metastable helium at room temperature is experimentally shown to exhibit light storage capabilities for intermediate values of the detuning between the coupling and probe beams and the center of the a
We present a portable optically pumped magnetometer instrument for ultra-sensitive measurements within the Earths magnetic field. The central part of the system is a sensor head operating a MEMS-based Cs vapor cell in the light-shift dispersed Mz mod
Non-degenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick et al, Opt. Lett. 32, 178 (2007)], in a configuration which minimizes losses by absorption. In t
We show that coherent multiple light scattering, or diffuse light propagation, in a disordered atomic medium, prepared at ultra-low temperatures, can be be effectively delayed in the presence of a strong control field initiating a stimulated Raman pr