ﻻ يوجد ملخص باللغة العربية
When optically pumped magnetometers are aimed for the use in Earths magnetic field, the orientation of the sensor to the field direction is of special importance to achieve accurate measurement result. Measurement errors and inaccuracies related to the heading of the sensor can be an even more severe problem in the case of special operational configurations, such as for example the use of strong off-resonant pumping. We systematically study the main contributions to the heading error in systems that promise high magnetic field resolutions at Earths magnetic field strengths, namely the non-linear Zeeman splitting and the orientation dependent light shift. The good correspondence of our theoretical analysis to experimental data demonstrates that both of these effects are related to a heading dependent modification of the interaction between the laser light and the dipole moment of the atoms. Also, our results promise a compensation of both effects using a combination of clockwise and counter clockwise circular polarization.
We experimentally investigate the influence of the orientation of optically pumped magnetometers in Earths magnetic field. We focus our analysis to an operational mode that promises femtotesla field resolu-tions at such field strengths. For this so-c
We present a portable optically pumped magnetometer instrument for ultra-sensitive measurements within the Earths magnetic field. The central part of the system is a sensor head operating a MEMS-based Cs vapor cell in the light-shift dispersed Mz mod
The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic field range. This is a major source of heading error for scalar atomic magnetometers. We demonstrate a method to suppress the non
We investigate a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers (OPMs). This experiment is based upon the LC circuit axion detection concept of Sikivie, Sullivan, and
An array of sixteen laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiments magneti