ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the behavior of vanadium under high-pressure and high-temperature conditions

452   0   0.0 ( 0 )
 نشر من قبل Daniel Errandonea
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are discussed in comparison with previous studies. The melting temperatures determined in this study are higher than those previously obtained using the speckle method, but also considerably lower than those obtained from shock-wave experiments and linear muffin-tin orbital calculations. Finally, a high-pressure high-temperature equation of state up to 120 GPa and 2800 K has also been determined.



قيم البحث

اقرأ أيضاً

The crystal structure of CO2 filled pure SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron based x ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alp ha cages and 1 in the beta cages, giving a SiO2:CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure dependent rhombohedral distortion, indicating that pressure induced amorphization is prevented by the insertion of guest species in this open framework. The ambient-temperature lattice compressibility has been determined. In situ high pressure resistive heating experiments up to 750 K allow us to estimate the thermal expansivity at 5 GPa. Our data confirm that the insertion of CO2 reverses the negative thermal expansion of the empty zeolite structure. No evidence of any chemical reaction was observed. The possibility of synthesizing a silicon carbonate at high temperatures and higher pressures is discussed in terms of the evolution of C-O and Si-O distances between molecular and framework atoms.
189 - Ashok P , Yogesh Singh Chauhan , 2021
Vanadium dioxide (VO2) is a phase transition material that undergoes a reversible insulator-metal phase transition at ~ 68 C. Atmospheric pressure thermal oxidation (APTO) of vanadium (V) is a simple VO2 synthesis method in which V thin film is oxidi zed in open air. For an optimum oxidation duration, VO2 films are obtained with good phase transition properties. We recently reported a modified APTO process using a step temperature profile for oxidation (Thin Solid Films 706, 138003 (2020)). We demonstrated an ultra-low thermal budget synthesis of VO2 thin films with good electrical and optical phase transition properties. For a 130 nm room-temperature RF sputtered V thin film, an optimum oxidation duration of ~ 30 s was obtained. In this work, we study how the starting V film thickness and deposition temperature affects the optimum oxidation duration. V thin films of varying thickness (15-212 nm) and 120 nm thick V films with varying deposition temperature (~27-450 C) are prepared using RF magnetron sputtering. These films are oxidized for different oxidation durations and characterized using Raman and four-probe measurements to find the optimum oxidation duration for each deposition condition. We find that the optimum oxidation duration increases with the increase in V film thickness and V deposition temperature. We model the effect of V film thickness and deposition temperature on the optimal oxidation time using a parabolic law which can be used to obtain the optimal oxidation times for intermediate V thicknesses/deposition temperatures.
We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have fou nd evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs; trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO4. Room-temperature pressure-volume equations of state are reported. BiPO4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO4. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO4. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (010) plane at approximately 15 (21) degrees to the a axis for the case of our experimental (theoretical) study.
A thorough in situ characterization of materials at extreme conditions is challenging, and computational tools such as crystal structural search methods in combination with ab initio calculations are widely used to guide experiments by predicting the composition, structure, and properties of high-pressure compounds. However, such techniques are usually computationally expensive and not suitable for large-scale combinatorial exploration. On the other hand, data-driven computational approaches using large materials databases are useful for the analysis of energetics and stability of hundreds of thousands of compounds, but their utility for materials discovery is largely limited to idealized conditions of zero temperature and pressure. Here, we present a novel framework combining the two computational approaches, using a simple linear approximation to the enthalpy of a compound in conjunction with ambient-conditions data currently available in high-throughput databases of calculated materials properties. We demonstrate its utility by explaining the occurrence of phases in nature that are not ground states at ambient conditions and estimating the pressures at which such ambient-metastable phases become thermodynamically accessible, as well as guiding the exploration of ambient-immiscible binary systems via sophisticated structural search methods to discover new stable high-pressure phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا