ﻻ يوجد ملخص باللغة العربية
Vanadium dioxide (VO2) is a phase transition material that undergoes a reversible insulator-metal phase transition at ~ 68 C. Atmospheric pressure thermal oxidation (APTO) of vanadium (V) is a simple VO2 synthesis method in which V thin film is oxidized in open air. For an optimum oxidation duration, VO2 films are obtained with good phase transition properties. We recently reported a modified APTO process using a step temperature profile for oxidation (Thin Solid Films 706, 138003 (2020)). We demonstrated an ultra-low thermal budget synthesis of VO2 thin films with good electrical and optical phase transition properties. For a 130 nm room-temperature RF sputtered V thin film, an optimum oxidation duration of ~ 30 s was obtained. In this work, we study how the starting V film thickness and deposition temperature affects the optimum oxidation duration. V thin films of varying thickness (15-212 nm) and 120 nm thick V films with varying deposition temperature (~27-450 C) are prepared using RF magnetron sputtering. These films are oxidized for different oxidation durations and characterized using Raman and four-probe measurements to find the optimum oxidation duration for each deposition condition. We find that the optimum oxidation duration increases with the increase in V film thickness and V deposition temperature. We model the effect of V film thickness and deposition temperature on the optimal oxidation time using a parabolic law which can be used to obtain the optimal oxidation times for intermediate V thicknesses/deposition temperatures.
We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the p
Vanadium dioxide is a complex oxide material, which shows large resistivity and optical reflectance change while transitioning from the insulator to metal phase at ~68 {deg}C. In this work, we use a modified atmospheric thermal oxidation method to ox
Vanadium Dioxide (VO2) is a strongly correlated material, which exhibits insulator to metal transition at ~68 C along with large resistivity and infrared optical reflectance modulation. In this work, we use atmospheric pressure thermal oxidation of V
The complexity of strongly correlated electron physics in vanadium dioxide is exemplified as its rich phase diagrams of all kinds, which in turn shed light on the mechanisms behind its various phase transitions. In this work, we map out the hydrostat
The study of the interaction between graphene oxide and arsenic is of great relevance towards the development of adsorbent materials and as a way to understand how these two materials interact in the environment. In this work we show that As(III) ads