ترغب بنشر مسار تعليمي؟ اضغط هنا

The high-pressure behavior of CaMoO4

71   0   0.0 ( 0 )
 نشر من قبل Daniel Errandonea
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.

قيم البحث

اقرأ أيضاً

We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the p hase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are discussed in comparison with previous studies. The melting temperatures determined in this study are higher than those previously obtained using the speckle method, but also considerably lower than those obtained from shock-wave experiments and linear muffin-tin orbital calculations. Finally, a high-pressure high-temperature equation of state up to 120 GPa and 2800 K has also been determined.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs; trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO4. Room-temperature pressure-volume equations of state are reported. BiPO4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO4. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO4. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (010) plane at approximately 15 (21) degrees to the a axis for the case of our experimental (theoretical) study.
Na$_{2}$OsO$_{4}$ is an unusual quantum material that, in contrast to the common 5${d}^{2}$ oxides with spins = 1, owns a magnetically silent ground state with spin = 0 and a band gap at Fermi level attributed to a distortion in the OsO$_{6}$ octahed ral sites. In this semiconductor, our low-temperature electrical transport measurements indicate an anomaly at 6.3 K with a power-law behavior inclining through the semiconductor-to-metal transition observed at 23 GPa. Even more peculiarly, we discover that before this transition, the material becomes more insulating instead of merely turning into a metal according to the conventional wisdom. To investigate the underlying mechanisms, we applied experimental and theoretical methods to examine the electronic and crystal structures comprehensively, and conclude that the enhanced insulating state at high pressure originates from the enlarged distortion of the OsO$_{6}$. It is such a distortion that widens the band gap and decreases the electron occupancy in Oss ${t}_{2g}$ orbital through an interplay of the lattice, charge, and orbital in the material, which is responsible for the changes observed in our experiments.
A detailed temperature and pressure investigation on BiGdO$_{3}$ is carried out by means of dielectric constant, piezoelectric current, polarization-electric field loop, Raman scattering and x-ray diffraction measurements. Temperature dependent diele ctric constant and dielectric loss show two anomalies at about 290 K (T$_r$) and 720 K (T$_C$). The later anomaly is most likely due to antiferroelectric to paraelectric transition as hinted by piezoelectric current and polarization-electric field loop measurements at room temperature, while the former anomaly suggests reorientation of polarization. Cubic to orthorhombic structural transition is observed at about 10 GPa in high pressure x-ray diffraction studies accompanied by anisotropic lattice parameter changes. An expansion about 30 % along $a$-axis and 15 % contraction along $b$-axis during the structural transition result in 9.5 % expansion in unit cell volume. This structural transition is corroborated by anomalous softening and large increase in full width half maximum (FWHM) of 640 cm$^{-1}$ Raman mode above 10 GPa. Enhancement of large structural distortion and significant volume expansion during the structural transition indicate towards an antiferroelectric to ferroelectric transition in the system.
202 - A.R. Oganov , Y.M. Ma , Y. Xu 2010
Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc rightarrow bcc rightarrow simple cubic rightarrow Ca-IV rightarrow Ca-V, and becomes a good superconductor in the simple cubic and higher -pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The {beta}-tin (I41/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33-71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching ~20 K at 120 GPa, in good agreement with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا