ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the high-pressure materials genome

111   0   0.0 ( 0 )
 نشر من قبل Maximilian Amsler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A thorough in situ characterization of materials at extreme conditions is challenging, and computational tools such as crystal structural search methods in combination with ab initio calculations are widely used to guide experiments by predicting the composition, structure, and properties of high-pressure compounds. However, such techniques are usually computationally expensive and not suitable for large-scale combinatorial exploration. On the other hand, data-driven computational approaches using large materials databases are useful for the analysis of energetics and stability of hundreds of thousands of compounds, but their utility for materials discovery is largely limited to idealized conditions of zero temperature and pressure. Here, we present a novel framework combining the two computational approaches, using a simple linear approximation to the enthalpy of a compound in conjunction with ambient-conditions data currently available in high-throughput databases of calculated materials properties. We demonstrate its utility by explaining the occurrence of phases in nature that are not ground states at ambient conditions and estimating the pressures at which such ambient-metastable phases become thermodynamically accessible, as well as guiding the exploration of ambient-immiscible binary systems via sophisticated structural search methods to discover new stable high-pressure phases.



قيم البحث

اقرأ أيضاً

We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the p hase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are discussed in comparison with previous studies. The melting temperatures determined in this study are higher than those previously obtained using the speckle method, but also considerably lower than those obtained from shock-wave experiments and linear muffin-tin orbital calculations. Finally, a high-pressure high-temperature equation of state up to 120 GPa and 2800 K has also been determined.
In the present work we have proposed the method that allows one to easily estimate hardness and bulk modulus of known or hypothetical solid phases from the data on Gibbs energy of atomization of the elements and corresponding covalent radii. It has b een shown that hardness and bulk moduli of compounds strongly correlate with their thermodynamic and structural properties. The proposed method may be used for a large number of compounds with various types of chemical bonding and structures; moreover, the temperature dependence of hardness may be calculated, that has been performed for diamond and cubic boron nitride. The correctness of this approach has been shown for the recently synthesized superhard diamond-like BC5. It has been predicted that the hypothetical forms of B2O3, diamond-like boron, BCx and COx, which could be synthesized at high pressures and temperatures, should have extreme hardness.
Electrotarnsport and magnetic properties of new phases in the system Cr-GaSb were studied. The samples were prepared by high-pressure (P=6-8 GPa) high-temperature treatment and identified by x-ray diffraction and scanning electron microscopy (SEM). O ne of the CrGa$_2$Sb$_2$ phases with an orthorhombic structure $Iba2$ has a combination of ferromagnetic and semiconductor properties and is potentially promising for spintronic applications. Another high-temperature phase is paramagnetic and identified as tetragonal $I4/mcm$.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs; trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO4. Room-temperature pressure-volume equations of state are reported. BiPO4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO4. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO4. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (010) plane at approximately 15 (21) degrees to the a axis for the case of our experimental (theoretical) study.
High pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here we report the synthesis at ~90 GPa of novel beryllium polynitrides, monoclinic and triclinic BeN4. The triclinic phase, upon decompression to ambient conditions, transforms into a compound with atomic-thick BeN4 layers interconnected via weak van der Waals bonds consisting of polyacetylene-like nitrogen chains with conjugated {pi}-systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN4 layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN4 layer, i.e. beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا